960 resultados para Death cell


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Snail zinc-finger transcription factors trigger epithelial-mesenchymal transitions (EMTs), endowing epithelial cells with migratory and invasive properties during both embryonic development and tumor progression. During EMT, Snail provokes the loss of epithelial markers, as well as changes in cell shape and the expression of mesenchymal markers. Here, we show that in addition to inducing dramatic phenotypic alterations, Snail attenuates the cell cycle and confers resistance to cell death induced by the withdrawal of survival factors and by pro-apoptotic signals. Hence, Snail favors changes in cell shape versus cell division, indicating that with respect to oncogenesis, although a deregulation/increase in proliferation is crucial for tumor formation and growth, this may not be so for tumor malignization. Finally, the resistance to cell death conferred by Snail provides a selective advantage to embryonic cells to migrate and colonize distant territories, and to malignant cells to separate from the primary tumor, invade, and form metastasis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Histamine acts as a neurotransmitter in the central nervous system. Brain histamine in synthesized in neurons located to the posterior hypothalamus, from where these neurons send their projections to different parts of the brain. Released histamine participates in the regulation of several physiological functions such as arousal, attention and body homeostasis. Disturbances in the histaminergic system have been detected in diseases such as epilepsy, sleep disorders, anxiety, depression, Alzheimer’s disease, and schizophrenia. The purpose of this thesis was to develop optimal culture conditions for the histaminergic neurons, to study their detailed morphology, and to find out their significance in the kainic acid (KA)-induced neuronal death in the immature rat hippocampus. The morphology of the histaminergic neurons in vitro was comparable with the earlier findings. Histamine-containing vesicles were found in the axon but also in the cell body and dendrites suggesting a possibility for the somatodendritic release. Moreover, histamine was shown to be colocalized with the vesicular monoamine transporter 2 (VMAT2) suggesting that VMAT2 transports histamine to the subcellular storage vesicles. Furthermore, histamine was localized with γ-aminobutyric acid (GABA) in distinct storage vesicles and with neuropeptide galanin partly in the same storage vesicles suggesting different corelease mechanisms for GABA and galanin with histamine. In the organotypic hippocampal slice cultures, KA-induced neuronal death was first detected 12 h after the treatment being restricted mainly to the CA3 subregion. Moreover, cell death was irreversible, since the 48 h recovery period did not save the cells, but instead increased the damage. Finally, neuronal death was suggested to be necrotic, since intracellular apoptotic pathways were not activated, and the morphological changes detected with the electron microscopy were characteristic for necrosis. In the coculture system of the hippocampal and posterior hypothalamic slices, histaminergic neurons significantly decreased epileptiform burst activity and neuronal death in the hippocampal slices, this effect being mediated by histamine 1 (H1) and 3 (H3) receptors. In conclusion, the histaminergic neurons were maintained succesfully in the in vitro conditions exhibiting comparable morphological characteristics as detected earlier in vivo. Moreover, they developed functional innervations within the hippocampal slices in the coculture system. Finally, the KA-induced regionspecific, irreversible and necrotic hippocampal pyramidal cell damage was significantly decreased by the histaminergic neurons through H1 and H3 receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selon les statistiques, les maladies cancéreuses sont en augmentation dans les pays en développement ainsi que dans les pays industrialisés. Ceci peut s'expliquer largement par les habitudes alimentaires, le tabagisme, les infections, le manque d'activité physique, la pollution et le stress, entre autres. Ainsi, l'Organisation Mondiale de la Santé (OMS) prévoit une augmentation de la fréquence des cancers avec 15 millions de nouveaux cas par an en 2020. La transformation d'une cellule normale en une cellule cancéreuse se déroule en plusieurs étapes avec, au niveau moléculaire, différentes mutations ciblant des protéines régulant la croissance cellulaire. Un des exemples de protéines qui participent au contrôle des voies cellulaires impliquées lors de la prolifération des cellules sont les complexes de protéines mTORCl et mTORC2 (« mammalian target of rapamycin complex 1 and 2 »). Ces complexes mTORCl et mTORC2 activent des processus anaboliques (la synthèse de protéines et de lipides, le métabolisme énergétique, entre autres) et inhibent en même temps des voies de catabolismes cellulaires (autophagie et synthèse de lysosomes). Ils sont souvent mutés dans de nombreux cas de cancers, c'est pourquoi ils sont la cible de nombreux traitements anti-cancéreux. Pour ces raisons, nous nous sommes intéressés aux mécanismes d'actions moléculaires des drogues qui ciblent les complexes mTORCl et mTORC2. Nous avons ainsi découvert qu'une molécule présente uniquement dans le complexe mTORCl, raptor, était clivée en un fragment plus petit lors du traitement de cellules cancéreuses avec des drogues. Des molécules activées durant la mort cellulaire programmée par apoptose, les caspases, se sont révélées responsables du clivage de raptor. Nous avons ensuite décrit de façon précise les sites de clivage de raptor par les caspases durant la mort cellulaire. Il s'est avéré que le clivage de raptor affaiblissait son interaction avec mTOR au sein du complexe mTORCl, ce qui participe à l'inactivation de mTORCl lors de traitements avec des molécules anti-cancéreuses. Ces résultats nous ont permis de mieux comprendre les mécanismes d'actions de différentes drogues anti-cancéreuses au niveau du complexe mTORCl, ce qui peut être utile pour la synthèse de nouvelles molécules ciblant mTORCl ainsi que pour lutter contre les mécanismes de résistance chimiothérapeutiques. -- La protéine « mammalian target of rapamycin » (mTOR) est une sérine/thréonine kinase qui est hautement conservée des protistes à l'être humain. Deux complexes mTOR existent : le complexe 1 mTOR (mTORCl) et le complexe 2 mTOR (mTORC2). Ils régulent positivement des processus anaboliques (synthèse de protéines et de lipides, le métabolisme énergétique, l'organisation du cytosquelette, la survie cellulaire) et négativement des voies cataboliques (autophagic, biogenèse de lysosomes). Les complexes mTORCl et mTORC2 sont sensibles aux signaux mitogéniques tels que les acides aminés, le glucose, les facteurs de croissance, l'état énergétique (ATP) et les niveaux d'oxygène et induisent des voies de croissance cellulaire essentielles. La voie cellulaire regulée par mTORCl peut être hyperactivée dans de nombreux cancers humains. Puisque plusieurs voies cellulaires convergent et régulent les complexes mTORCl et mTORC2, des mutations dans les kinases en amont peuvent mener à une dérégulation de l'activation de mTOR. Des stratégies thérapeutiques ont été développées pour cibler les complexes mTORCl et mTORC2, ainsi que les kinases en amont qui régulent mTOR. Plusieurs drogues ciblant mTORCl, telles que la rapamycine et la curcumine, affectent l'interaction entre mTOR et un composant spécifique de mTORCl, raptor. Dans cette étude, nous nous sommes intéressés aux mécanismes moléculaires des drogues qui ciblent mTORCl, ainsi que leur effet déstabilisant sur l'interaction entre mTOR et raptor dans des lignées cellulaires de lymphomes. Nous avons démontré que raptor était clivé en un fragment de lOOkDa après traitement avec la rapamycine, la curcumine, l'étoposide, la cisplatine, la staurosporine et le ligand Fas (FasL). Etant donné que ces drogues ont été décrites comme induisant I'apoptose, l'utilisation d'un inhibiteur de caspases (z- VAD-fmk) a révélé que le clivage de raptor, lors de la mort cellulaire, était dépendant des caspases. Des essais caspases in vitro ont permis d'identifier la caspase-6 (ainsi que probablement d'autres caspases) comme étant une protéase impliquée dans le clivage de raptor. La séquence protéique de raptor a montré potentiellement plusieurs sites de clivage de caspases aux extrémités amino-terminale et carboxy-terminale. La mutagénèse a permis d'identifier les sites de clivages de raptor par les caspases comme étant DEAD LTD (acides aminés 17-23) et DDADD (acides aminés 939¬943). De plus, le clivage de raptor corrèle avec l'inhibition de l'activité de mTORCl envers ces substrats (S6K et 4E-BP1). Nous avons aussi observé que le clivage de raptor affaiblissait l'interaction entre mTOR et raptor, ce qui indique que ce clivage est une étape critique dans l'inhibition de mTORCl durant I'apoptose. Pour terminer, la mutagénèse du site de clivage de raptor DDADD a montré une résistance à la mort cellulaire de cellules cancéreuses. Notre travail de recherche a révélé un nouveau mécanisme moléculaire qui module l'organisation et l'activité de mTORCl, ce qui peut être d'un grand intérêt pour les recherches dans le domaine de mTOR ainsi que pour la découverte de molécules ciblant mTORCl. -- The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase, which is highly conserved from yeast to humans. Two different mTOR complexes exist: the mTOR complex 1 (mTORCl) and the mTOR complex 2 (mTORC2). They positively regulate anabolic processes (protein and lipid synthesis, energy metabolism, cytoskeleton organization, cell survival) and negatively regulate catabolic pathways (autophagy, lysosome biogenesis). The mTORCl and mTORC2 respond to mitogenic stimuli such as amino acids, glucose, growth factors, energy levels (ATP) and oxygen levels and drive essential cellular growth pathways. The mTORCl pathway can be found hyperactivated in numerous human cancers. As various cellular pathways converge and regulate mTORCl and mTORC2, mutations in upstream protein kinases can lead to a deregulated mTOR activation. Different therapeutic strategies have been developped to target mTORCl, mTORC2, as well as upstream protein kinases regulating mTOR pathways. Various drugs targeting mTORCl, such as rapamycin and curcumin, affect the interaction between mTOR and a specific mTORCl component, raptor. In this study, we investigated the molecular mechanisms of drugs targeting mTORCl, as well as their destabilizing effect on the mTOR-raptor interaction in lymphoma cell lines. We demonstrated that raptor was processed into a lOOkDa fragment after treatment with rapamycin, curcumin, etoposide, cisplatin, staurosporine and FasL. As these drugs were reported to induce apoptosis, the use of a pan-caspase inhibitor (z-VAD-fmk) revealed that the cleavage of raptor under cell death was caspase-dependent. In vitro caspase assays were performed to identify caspases-6 (and probably other caspases) as an important cysteine protease implicated in the cleavage of raptor. Analysis of raptor protein sequence showed several putative caspase-specific cleavage sites at the N-terminal and the C-terminal ends. Mutagenesis studies allowed us to identify the DEADLTD (amino acids 17-23) and the DDADD (amino acids 939-943) as the caspase-dependent cleavage residues of raptor. Furthermore, the cleavage of raptor correlated with inhibition of mTORCl activity towards its specific targets (4E-BP1 and S6K). We also highlighted that raptor processing weakened the interaction between mTOR and raptor, indicating that raptor cleavage is a critical step in the mTORCl inhibition process during apoptosis. Finally, mutagenesis of raptor C-terminal cleavage site (DDADD) conferred resistance to the chemotherapeutic-mediated cell death cascade of cancer cell. Our research work highlighted a new molecular mechanism modulating mTORCl organization and activity, which can be of great interest in the mTOR field research and for designing drugs trageting mTORCl.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine-cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regulation of cell growth, death, and polarization by ERBB4 ErbB4 is a member of the epidermal growth factor receptor (EGFR, ErbB) family. The other members are EGFR, ErbB2 and ErbB3. ErbB receptors are important regulators for example in cardiovascular, neural and breast development but control key cellular functions also in many adult tissues. Abnormal ErbB signaling has been shown to be involved in various illnesses such as cancers and heart diseases. Among the ErbBs, ErbB4 has been shown to have unique signaling characteristics. ErbB4 exists in four alternatively spliced isoforms that are expressed in a tissue-specific manner. Two of the isoforms can be cleaved by membrane proteases, resulting in release of soluble intracellular domains (ICD). Once released into the cytosol, the ICD is capable of translocating into the nucleus and participating in regulation of transcription. The functional differences and the tissue-specific expression patterns suggest isoformspecific roles for ErbB4 isoforms. However, the abilities of ErbB4 isoforms to differently regulate cellular functions were discovered only recently and are not well understood. This study aimed to determine the expression patterns of ErbB4 in normal and diseased tissue, and to define whether the cleavable and non-cleavable isoforms could regulate different target genes and therefore, cellular functions. In this study, a comprehensive ErbB4 expression pattern in several normal tissues, various cancers and non-neoplastic diseases was determined. In addition, the data demonstrated that the cleavable and non-cleavable ErbB4 isoforms could regulate different cellular functions and target genes. Finally, this study defined the cellular responses regulated by ErbB4 during kidney development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Galectin-1 belongs to an evolutionarily conserved family of animal ß-galactoside-binding proteins, which exert their functions by crosslinking the oligosaccharides of specific glycoconjugate ligands. During the past decade, attempts to identify the functional role of galectin-1 suggested participation in the regulation of the immune response. Only in the last few years has the molecular mechanism involved in these properties been clearly elucidated, revealing a critical role for galectin-1 as an alternative signal in the generation of T cell death. In the present study we will discuss the latest advances in galectin research in the context of the regulation of the immune response, not only at the central level but also at the periphery. Moreover, we will review the purification, biochemical properties and functional significance of a novel galectin-1-like protein from activated rat macrophages, whose expression is differentially regulated according to the activation state of the cells. The novel role of a carbohydrate-binding protein in the regulation of apoptosis is providing a breakthrough in galectin research and extending the interface between immunology, glycobiology and clinical medicine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment). Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement). The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution). Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human localized cutaneous leishmaniasis (LCL), induced by Leishmania braziliensis, ranges from a clinically mild, self-healing disease with localized cutaneous lesions to severe forms which can present secondary metastatic lesions. The T cell-mediated immune response is extremely important to define the outcome of the disease; however, the underlying mechanisms involved are not fully understood. A flow cytometric analysis of incorporation of 7-amino actinomycin D and CD4+ or CD8+ T cell surface phenotyping was used to determine whether different frequencies of early apoptosis or accidental cell death occur at different stages of LCL lesions. When all cells obtained from a biopsy sample were analyzed, larger numbers of early apoptotic and dead cells were observed in lesions from patients with active disease (mean = 39.5 ± 2.7%) as compared with lesions undergoing spontaneous healing (mean = 17.8 ± 2.2%). Cells displaying normal viability patterns obtained from active LCL lesions showed higher numbers of early apoptotic events among CD8+ than among CD4+ T cells (mean = 28.5 ± 3.8 and 15.3 ± 3.0%, respectively). The higher frequency of cell death events in CD8+ T cells from patients with LCL may be associated with an active form of the disease. In addition, low frequencies of early apoptotic events among the CD8+ T cells were observed in two patients with self-healing lesions. Although the number of patients in the latter group was small, it is possible to speculate that, during the immune response, differences in apoptotic events in CD4+ and CD8+ T cell subsets could be responsible for controlling the CD4/CD8 ratio, thus leading to healing or maintenance of disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym). The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intrahippocampal administration of kainic acid (KA) induces synaptic release of neurotrophins, mainly brain-derived neurotrophic factor, which contributes to the acute neuronal excitation produced by the toxin. Two protein tyrosine kinase inhibitors, herbimycin A and K252a, were administered intracerebroventricularly, in a single dose, to attenuate neurotrophin signaling during the acute effects of KA, and their role in epileptogenesis was evaluated in adult, male Wistar rats weighing 250-300 g. The latency for the first Racine stage V seizure was 90 ± 8 min in saline controls (N = 4) which increased to 369 ± 71 and 322 ± 63 min in animals receiving herbimycin A (1.74 nmol, N = 4) and K252a (10 pmol, N = 4), respectively. Behavioral alterations were accompanied by diminished duration of EEG paroxysms in herbimycin A- and K252a-treated animals. Notwithstanding the reduction in seizure severity, cell death (60-90% of cell loss in KA-treated animals) in limbic regions was unchanged by herbimycin A and K252a. However, aberrant mossy fiber sprouting was significantly reduced in the ipsilateral dorsal hippocampus of K252a-treated animals. In this model of temporal lobe epilepsy, both protein kinase inhibitors diminished the acute epileptic activity triggered by KA and the ensuing morphological alterations in the dentate gyrus without diminishing cell loss. Our current data indicating that K252a, but not herbimycin, has an influence over KA-induced mossy fiber sprouting further suggest that protein tyrosine kinase receptors are not the only factors which control this plasticity. Further experiments are necessary to elucidate the exact signaling systems associated with this K252a effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cardiovascular disease is one of the leading causes of death worldwide, and evidence indicates a correlation between the inflammatory process and cardiac dysfunction. Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for long-term use because of potentially severe side effects to the heart. Considering this and the frequent prescribing of commercial celecoxib, the present study analyzed cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model. After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase chain reaction analysis showed that the drug modulated the expression level of genes related to death pathways, and Western blot analyses demonstrated a modulatory effect of the drug on COX-2 protein levels in cardiac cells. In addition, the results demonstrated a downregulation of prostaglandin E2 production by the cardiac cells incubated with celecoxib, in a dose-specific manner. These results are consistent with the decrease in cell viability and the presence of necrotic processes shown by Fourier transform infrared analysis, suggesting a direct correlation of prostanoids in cellular homeostasis and survival.