862 resultados para Deadlock Analysis, Distributed Systems, Concurrent Systems, Formal Languages
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Processes are a central entity in enterprise collaboration. Collaborative processes need to be executed and coordinated in a distributed Computational platform where computers are connected through heterogeneous networks and systems. Life cycle management of such collaborative processes requires a framework able to handle their diversity based on different computational and communication requirements. This paper proposes a rational for such framework, points out key requirements and proposes it strategy for a supporting technological infrastructure. Beyond the portability of collaborative process definitions among different technological bindings, a framework to handle different life cycle phases of those definitions is presented and discussed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore they constitute the foundation upon which real-time applications are to be implemented. A potential leap towards the use of fieldbus in such time-critical applications lies in the evaluation of its temporal behaviour. In the past few years several research works have been performed on a number of fieldbuses. However, these have mostly focused on the message passing mechanisms, without taking into account the communicating application tasks running in those distributed systems. The main contribution of this paper is to provide an approach for engineering real-time fieldbus systems where the schedulability analysis of the distributed system integrates both the characteristics of the application tasks and the characteristics of the message transactions performed by these tasks. In particular, we address the case of system where the Process-Pascal multitasking language is used to develop P-NET based distributed applications
Resumo:
Classical lock-based concurrency control does not scale with current and foreseen multi-core architectures, opening space for alternative concurrency control mechanisms. The concept of transactions executing concurrently in isolation with an underlying mechanism maintaining a consistent system state was already explored in fault-tolerant and distributed systems, and is currently being explored by transactional memory, this time being used to manage concurrent memory access. In this paper we discuss the use of Software Transactional Memory (STM), and how Ada can provide support for it. Furthermore, we draft a general programming interface to transactional memory, supporting future implementations of STM oriented to real-time systems.
Resumo:
This work focuses on highly dynamic distributed systems with Quality of Service (QoS) constraints (most importantly real-time constraints). To that purpose, real-time applications may benefit from code offloading techniques, so that parts of the application can be offloaded and executed, as services, by neighbour nodes, which are willing to cooperate in such computations. These applications explicitly state their QoS requirements, which are translated into resource requirements, in order to evaluate the feasibility of accepting other applications in the system.
Resumo:
The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.
Resumo:
In this paper we describe a low cost distributed system intended to increase the positioning accuracy of outdoor navigation systems based on the Global Positioning System (GPS). Since the accuracy of absolute GPS positioning is insufficient for many outdoor navigation tasks, another GPS based methodology – the Differential GPS (DGPS) – was developed in the nineties. The differential or relative positioning approach is based on the calculation and dissemination of the range errors of the received GPS satellites. GPS/DGPS receivers correlate the broadcasted GPS data with the DGPS corrections, granting users increased accuracy. DGPS data can be disseminated using terrestrial radio beacons, satellites and, more recently, the Internet. Our goal is to provide mobile platforms within our campus with DGPS data for precise outdoor navigation. To achieve this objective, we designed and implemented a three-tier client/server distributed system that, first, establishes Internet links with remote DGPS sources and, then, performs campus-wide dissemination of the obtained data. The Internet links are established between data servers connected to remote DGPS sources and the client, which is the data input module of the campus-wide DGPS data provider. The campus DGPS data provider allows the establishment of both Intranet and wireless links within the campus. This distributed system is expected to provide adequate support for accurate outdoor navigation tasks.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Large scale distributed data stores rely on optimistic replication to scale and remain highly available in the face of net work partitions. Managing data without coordination results in eventually consistent data stores that allow for concurrent data updates. These systems often use anti-entropy mechanisms (like Merkle Trees) to detect and repair divergent data versions across nodes. However, in practice hash-based data structures are too expensive for large amounts of data and create too many false conflicts. Another aspect of eventual consistency is detecting write conflicts. Logical clocks are often used to track data causality, necessary to detect causally concurrent writes on the same key. However, there is a nonnegligible metadata overhead per key, which also keeps growing with time, proportional with the node churn rate. Another challenge is deleting keys while respecting causality: while the values can be deleted, perkey metadata cannot be permanently removed without coordination. Weintroduceanewcausalitymanagementframeworkforeventuallyconsistentdatastores,thatleveragesnodelogicalclocks(BitmappedVersion Vectors) and a new key logical clock (Dotted Causal Container) to provides advantages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism; 2) greatly reduced per-key causality metadata size; 3) accurate key deletes without permanent metadata.
Resumo:
The primary mission of Universal Protein Resource (UniProt) is to support biological research by maintaining a stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces freely accessible to the scientific community. UniProt is produced by the UniProt Consortium which consists of groups from the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). UniProt is comprised of four major components, each optimized for different uses: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters and the UniProt Metagenomic and Environmental Sequence Database. UniProt is updated and distributed every 4 weeks and can be accessed online for searches or download at http://www.uniprot.org.
Resumo:
JXME is the JXTA protocols implementation formobile devices using J2ME. Two different flavors of JXME have been implemented, each one specific for a particular set of devices, according to their capabilities. The main value of JXME is its simplicity to create peer-to-peer (P2P) applications in limited devices. In addition to assessing JXME functionalities, it is also important to realize the default security level provided. This paper presents a brief analysis of the current state of security in JXME, focusing on the JXME-Proxied version, identifies existing vulnerabilities and proposes further improvements in this field.
Resumo:
The past few decades have seen a considerable increase in the number of parallel and distributed systems. With the development of more complex applications, the need for more powerful systems has emerged and various parallel and distributed environments have been designed and implemented. Each of the environments, including hardware and software, has unique strengths and weaknesses. There is no single parallel environment that can be identified as the best environment for all applications with respect to hardware and software properties. The main goal of this thesis is to provide a novel way of performing data-parallel computation in parallel and distributed environments by utilizing the best characteristics of difference aspects of parallel computing. For the purpose of this thesis, three aspects of parallel computing were identified and studied. First, three parallel environments (shared memory, distributed memory, and a network of workstations) are evaluated to quantify theirsuitability for different parallel applications. Due to the parallel and distributed nature of the environments, networks connecting the processors in these environments were investigated with respect to their performance characteristics. Second, scheduling algorithms are studied in order to make them more efficient and effective. A concept of application-specific information scheduling is introduced. The application- specific information is data about the workload extractedfrom an application, which is provided to a scheduling algorithm. Three scheduling algorithms are enhanced to utilize the application-specific information to further refine their scheduling properties. A more accurate description of the workload is especially important in cases where the workunits are heterogeneous and the parallel environment is heterogeneous and/or non-dedicated. The results obtained show that the additional information regarding the workload has a positive impact on the performance of applications. Third, a programming paradigm for networks of symmetric multiprocessor (SMP) workstations is introduced. The MPIT programming paradigm incorporates the Message Passing Interface (MPI) with threads to provide a methodology to write parallel applications that efficiently utilize the available resources and minimize the overhead. The MPIT allows for communication and computation to overlap by deploying a dedicated thread for communication. Furthermore, the programming paradigm implements an application-specific scheduling algorithm. The scheduling algorithm is executed by the communication thread. Thus, the scheduling does not affect the execution of the parallel application. Performance results achieved from the MPIT show that considerable improvements over conventional MPI applications are achieved.