912 resultados para Data distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

distribuciones diamétricas con ALS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Valoración de la transferencia temporal de los modelos de distribución de especies para su aplicación en nuestros días utilizando datos paleobotánicos Corilus avellana y Alnus glutinosa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The continuous plankton recorder (CPR) survey is an upper layer plankton monitoring program that has regularly collected samples, at monthly intervals, in the North Atlantic and adjacent seas since 1946. Water from approximately 6 m depth enters the CPR through a small aperture at the front of the sampler and travels down a tunnel where it passes through a silk filtering mesh of 270 µm before exiting at the back of the CPR. The plankton filtered on the silk is analyzed in sections corresponding to 10 nautical miles (approx. 3 m**3 of seawater filtered) and the plankton microscopically identified (Richardson et al., 2006 and reference therein). In the present study we used the CPR data to investigate the current basin scale distribution of C. finmarchicus (C5-C6), C. helgolandicus (C5-C6), C. hyperboreus (C5-C6), Pseudocalanus spp. (C6), Oithona spp. (C1-C6), total Euphausiida, total Thecosomata and the presence/absence of Cnidaria and the Phytoplankton Colour Index (PCI). The PCI, which is a visual assessment of the greenness of the silk, is used as an indicator of the distribution of total phytoplankton biomass across the Atlantic basin (Batten et al., 2003). Monthly data collected between 2000 and 2009 were gridded using the inverse-distance interpolation method, in which the interpolated values were the nodes of a 2 degree by 2 degree grid. The resulting twelve monthly matrices were then averaged within the year and in the case of the zooplankton the data were log-transformed (i.e. log10 (x+1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The MESA Puget Sound Project is sponsored by the National Oceanic and Atmospheric Administration and the Environmental Protection Agency.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the mid 19th century, Horace Mann insisted that a broad provision of public schooling should take precedence over the liberal education of an elite group. In that regard, his generation constructed a state sponsored common schooling enterprise to educate the masses. More than 100 years later, the institution of public schooling fails to maintain an image fully representative of the ideals of equity and inclusion. Critical theory in educational thought associates the dominant practice of functional schooling with maintenance of the status quo, an unequal distribution of financial, political, and social resources. This study examined the empirical basis for the association of public schooling with the status quo using the most recent and comparable cross-country income inequality data. Multiple regression analysis evaluated the possible relationship between national income inequality change over the period 1985-2005 and variables representative of national measures of education supply in the prior decade. The estimated model of income inequality development attempted to quantify the relationship between education supply factors and subsequent income inequality developments by controlling for economic, demographic, and exogenous factors. The sample included all nations with comparable income inequality data over the measurement period, N = 56. Does public school supply affect national income distribution? The estimated model suggested that an increase in the average years of schooling among the population age 15 years or older, measured over the period 1975-1985, provided a mechanism that resulted in a more equal distribution of income over the period 1985-2005 among low and lower-middle income nations. The model also suggested that income inequality increased less or decreased more in smaller economies and when the percentage of the population age < 15 years grew more slowly over the period 1985-2000. In contrast, this study identified no significant relationship between school supply changes measured over prior periods and income inequality development over the period 1985-2005 among upper-middle and high income nations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shorebirds have declined severely across the East Asian-Australasian Flyway. Many species rely on intertidal habitats for foraging, yet the distribution and conservation status of these habitats across Australia remain poorly understood. Here, we utilised freely available satellite imagery to produce the first map of intertidal habitats across Australia. We estimated a minimum intertidal area of 9856 km**2, with Queensland and Western Australia supporting the largest areas. Thirty-nine percent of intertidal habitats were protected in Australia, with some primarily within marine protected areas (e.g. Queensland) and others within terrestrial protected areas (e.g. Victoria). In fact, three percent of all intertidal habitats were protected both by both marine and terrestrial protected areas. To achieve conservation targets, protected area boundaries must align more accurately with intertidal habitats. Shorebirds use intertidal areas to forage and supratidal areas to roost, so a coordinated management approach is required to account for movement of birds between terrestrial and marine habitats. Ultimately, shorebird declines are occurring despite high levels of habitat protection in Australia. There is a need for a concerted effort both nationally and internationally to map and understand how intertidal habitats are changing, and how habitat conservation can be implemented more effectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The authors would like to thank the College of Life Sciences of Aberdeen University and Marine Scotland Science which funded CP's PhD project. Skate tagging experiments were undertaken as part of Scottish Government project SP004. We thank Ian Burrett for help in catching the fish and the other fishermen and anglers who returned tags. We thank José Manuel Gonzalez-Irusta for extracting and making available the environmental layers used as environmental covariates in the environmental suitability modelling procedure. We also thank Jason Matthiopoulos for insightful suggestions on habitat utilization metrics as well as Stephen C.F. Palmer, and three anonymous reviewers for useful suggestions to improve the clarity and quality of the manuscript.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.

For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.

Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.

Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.

In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.

For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.

Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.