902 resultados para Daily inflation
Resumo:
Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro(3))GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p <0.05) lower in (Pro(3))GIP-treated mice compared to control mice after just 9 days of treatment. (Pro(3))GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p <0.05 to p <0.001). The (Pro(3))GIP-treated group also exhibited significantly (p <0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39) amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro(3))GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro(3)GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.
Resumo:
The savanna elephant is the largest extant mammal and often inhabits hot and and environments. Due to their large size, it might be expected that elephants have particular physiological adaptations, such as adjustments to the rhythms of their core body temperature (T-b) to deal with environmental challenges. This study describes for the first time the T-b daily rhythms in savanna elephants. Our results showed that elephants had lower mean T-b values (36.2 +/- 0.49 degrees C) than smaller ungulates inhabiting similar environments but did not have larger or smaller amplitudes of T-b variation (0.40 +/- 0.12 degrees C), as would be predicted by their exposure to large fluctuations in ambient temperature or their large size. No difference was found between the daily T-b rhythms measured under different conditions of water stress. Peak T-b's occurred late in the evening (22: 10) which is generally later than in other large mammals ranging in similar environmental conditions. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
1. Free-living animals make complex decisions associated with optimizing energy and nutrient intake. In environments where ambient temperatures fall below the thermoneutral zone, homeotherms must choose whether or not to forage, how long and what to forage for, and whether or not to perform activities that conserve energy.
Resumo:
We compared body temperature (T-b) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T-b peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T-b of both populations increased. In addition, with increased salinity, the T-b daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T-b values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T-b variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T-b in the SFS mice. At 2.5% salinity, the difference between the mean daily T-b of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats axe forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities. (C) 2002 Elsevier Science Inc. All rights reserved.