449 resultados para DYSREGULATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vestibular migraine (VM) is a common disorder in which genetic, epigenetic, and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal gray, locus coeruleus, and nucleus raphe magnus) are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs, and pain. The interactions among several functional and structural neural networks could explain the pathogenic mechanisms of VM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: A hallmark of the pathophysiology of schizophrenia is a dysfunction of parvalbumin-expressing fast-spiking interneurons, which are essential for the coordination of neuronal synchrony during sensory and cognitive processing. Oxidative stress as observed in schizophrenia affects parvalbumin interneurons. However, it is unknown whether the deleterious effect of oxidative stress is particularly prevalent during specific developmental time windows. METHODS: We used mice with impaired synthesis of glutathione (Gclm knockout [KO] mice) to investigate the effect of redox dysregulation and additional insults applied at various periods of postnatal development on maturation and long-term integrity of parvalbumin interneurons in the anterior cingulate cortex. RESULTS: A redox dysregulation, as in Gclm KO mice, renders parvalbumin interneurons but not calbindin or calretinin interneurons vulnerable and prone to exhibit oxidative stress. A glutathione deficit delays maturation of parvalbumin interneurons, including their perineuronal net. Moreover, an additional oxidative challenge in preweaning or pubertal but not in young adult Gclm KO mice reduces the number of parvalbumin-immunoreactive interneurons. This effect persists into adulthood and can be prevented with the antioxidant N-acetylcysteine. CONCLUSIONS: In Gclm KO mice, early-life insults inducing oxidative stress are detrimental to immature parvalbumin interneurons and have long-term consequences. In analogy, individuals carrying genetic risks to redox dysregulation would be potentially vulnerable to early-life environmental insults, during the maturation of parvalbumin interneurons. Our data support the need to develop novel therapeutic approaches based on antioxidant and redox regulator compounds such as N-acetylcysteine, which could be used preventively in young at-risk subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that activates caspase 1, leading to the processing and secretion of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and IL-18. The NLRP3 inflammasome is activated by a wide range of danger signals that derive not only from microorganisms but also from metabolic dysregulation. It is unclear how these highly varied stress signals can be detected by a single inflammasome. In this Opinion article, we review the different signalling pathways that have been proposed to engage the NLRP3 inflammasome and suggest a model in which one of the crucial elements for NLRP3 activation is the generation of reactive oxygen species (ROS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2 g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of gender differences in emotion has attracted much attention given the potential ramifications on our understanding of sexual differences in disorders involving emotion dysregulation. Yet, research on content-specific gender differences across adulthood in emotional responding is lacking. The aims of the present study were twofold. First, we sought to investigate to what extent gender differences in the self-reported emotional experience are content specific. Second, we sought to determine whether gender differences are stable across the adult lifespan. We assessed valence and arousal ratings of 14 picture series, each of a different content, in 94 men and 118 women aged 20 to 81. Compared to women, men reacted more positively to erotic images, whereas women rated low-arousing pleasant family scenes and landscapes as particularly positive. Women displayed a disposition to respond with greater defensive activation (i.e., more negative valence and higher arousal), in particular to the most arousing unpleasant contents. Importantly, significant interactions between gender and age were not found for any single content. This study makes a novel contribution by showing that gender differences in the affective experiences in response to different contents persist across the adult lifespan. These findings support the "stability hypothesis" of gender differences across age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hallmark of schizophrenia pathophysiology is the dysfunction of cortical inhibitory GABA neurons expressing parvalbumin, which are essential for coordinating neuronal synchrony during various sensory and cognitive tasks. The high metabolic requirements of these fast-spiking cells may render them susceptible to redox dysregulation and oxidative stress. Using mice carrying a genetic redox imbalance, we demonstrate that extracellular perineuronal nets, which constitute a specialized polyanionic matrix enwrapping most of these interneurons as they mature, play a critical role in the protection against oxidative stress. These nets limit the effect of genetically impaired antioxidant systems and/or excessive reactive oxygen species produced by severe environmental insults. We observe an inverse relationship between the robustness of the perineuronal nets around parvalbumin cells and the degree of intracellular oxidative stress they display. Enzymatic degradation of the perineuronal nets renders mature parvalbumin cells and fast rhythmic neuronal synchrony more susceptible to oxidative stress. In parallel, parvalbumin cells enwrapped with mature perineuronal nets are better protected than immature parvalbumin cells surrounded by less-condensed perineuronal nets. Although the perineuronal nets act as a protective shield, they are also themselves sensitive to excess oxidative stress. The protection might therefore reflect a balance between the oxidative burden on perineuronal net degradation and the capacity of the system to maintain the nets. Abnormal perineuronal nets, as observed in the postmortem patient brain, may thus underlie the vulnerability and functional impairment of pivotal inhibitory circuits in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have found that mothers of very preterm infants often report symptoms of posttraumatic stress, which has been related to cortisol dysregulation. However, the exact nature of this association is not clear and can be different regarding the predominance of some specific symptoms of posttraumatic stress, as suggested by a recent model. The objective of the present study is to assess the association between diurnal salivary cortisol and posttraumatic stress symptoms in mothers of very preterm infants. Seventy-four mothers of very preterm infants were included in the study. Mothers' cortisol regulation and posttraumatic stress symptoms were evaluated 12 months after child theoretical term (40 weeks of gestation). Results showed an association between higher re-experiencing symptoms and flatter cortisol slopes. These results may help to understand differences found in studies assessing the relation between severity of posttraumatic stress and cortisol levels, by supporting the symptoms' theory. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Apoptosis is an evolutionarily conserved cellular suicide mechanism that can be triggered by activation of various pathways, such as the Fas-Pathway. Upon stimulation by its specific ligand (FasL), present at the surface of Cytotoxic Τ lymphocytes, the death receptor Fas initiates a signaling cascade culminating in the activation of cellular caspases, leading thus to cell death of the target cell (e.g. transformed cell). Dysregulation of apoptosis in general, and of Fas pathway in particular, was shown to contribute to pathogenesis of cancers and many human diseases. Even though, during the last decades the molecular mechanisms of apoptosis have been widely studied, it is important to better understand the mechanisms leading to apoptosis, to improve our understanding of pathological processes, and generate more subtle apoptosis-modulating therapies to fight cancer and other diseases. In order to identify new components of the Fas signaling pathway, a screen based on the mechanism of RNA interference was undertaken. After a first and a second manual whole-kinome screen, we identified several strong positive hits that showed a protection against Fas ligand-induced apoptosis with distinct siRNAs, notably STK11, an interesting tumor suppressor mutated in several sporadic and inherited cancers. The STK11 functional characterization reveals that this kinase represents an apically acting general pro-apoptotic modulator of the extrinsic pathway (FasL, TRAIL, TNF-induced apoptosis), but not of the intrinsic apoptotic pathway. The STK11 action on the Fas pathway was shown to be dependent on its kinase activity, but independent of AMPK, a well-characterized STK11 downstream substrate. Furthermore, STK11 was shown to interact with caspase-8, a major mediator of the extrinsic pathway, and modulate its activity through an unclear mechanism that may involve an STK11-dependant caspase-8 phosphorylation. This modification may allow a proper caspase-8 polyubiquitination and activation in p62 sequestosmes aggregates, but may also increase the activation of caspase-8 at the DISC level. In addition, we observed that STK11 modulate not only the apoptotic pathway induced by Fas engagement, but also FasL-induced JNK and NF- KB, sustaining an upstream role of this kinase in the pathway. In conclusion, our report reveals that STK11 is an important pro-apoptotic modulator of the Fas pathway in particular, and extrinsic pathway in general. Our finding could explain, at least partially, why inactivating mutations of the kinase leads to cancer, by allowing resistance to apoptosis and accordingly evasion of immune surveillance. Résumé : L'apoptose est un mécanisme de suicide cellulaire, conservé dans diverses espèces, et qui au niveau moléculaire est déclenché par différentes voies de signalisation, comme par exemple lors de l'activation du récepteur Fas. La liaison du ligand FasL au récepteur de la mort Fas, induit une cascade de signalisation qui conduit à l'activation des caspases. Les lymphocytes Τ cytotoxiques peuvent utiliser la voie Fas pour induire la mort et se débarrasser de cellules dangereuses pour le reste de l'organisme, tel que les cellules transformées. La dysrégulation de l'apoptose en général, et de la voie Fas en particulier, peut contribuer à diverses maladies telles que le cancer. Même si ces dernières décennies, les mécanismes moléculaires conduisant à l'apoptose ont été extensivement étudiés, il reste néanmoins important de mieux comprendre le phénomène d'apoptose, pour améliorer notre compréhension des processus pathologiques, mais surtout dans le but de développer de nouvelles thérapies ciblant l'apoptose contre le cancer et d'autres pathologies. Pour identifier de nouveau constituants de la voie Fas, un criblage génétique basé sur l'interférence à l'ARN a été entrepris. Après un premier et un deuxième criblage d'une librairie du kinome, nous avons identifié différentes protéines qui pourraient jouer un rôle positif dans la voie Fas, et en particulier la protéine suppresseur de tumeur STK11, qui est fréquemment mutée dans divers cancers sporadiques et héréditaires. La caractérisation fonctionnelle de STK11 a révélé que cette kinase était un modulateur apical de la voie extrinsèque de l'apoptose en général (Fas, TNF, TRAIL), mais pas de la voie intrinsèque. L'action de STK11 sur la voie Fas est dépendante de sa fonction kinase, mais indépendante de l'AMPK, un substrat bien caractérisé de STK11. De plus, STK11 interagît avec la caspase-8, un constituant majeur de la voie Fas, et module son activité, par un mécanisme encore peu clair qui pourrait impliquer une phosphorylation de la caspase-8 par STK11. Cette modification pourrait permettre une activation optimale de la caspase-8 en jouant un rôle dans le processus de polyubiquitination de la caspase-8, phénomène qui semble être important pour l'activation de la caspase-8 dans des agrégats protéiques avec p62, mais qui pourrait aussi augmenter son activation au niveau du DISC. Finalement, nous avons observé que STK11 modulait non seulement la voie apoptotique déclenchée par l'activation de Fas, mais aussi les voies non-apoptotiques de Fas, comme JNK et NF-KB. En conclusion notre étude, révèle que STK11 est un important modulateur pro- apoptotique de la voie Fas, et de la voie extrinsèque en général. Cette découverte pourrait expliquer, du moins partiellement, pourquoi les mutations inactivatrices de STK11 conduisent au cancer, par une augmentation de la résistance à l'apoptose et donc par l'évasion de la surveillance immunitaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Allostatic load reflects cumulative exposure to stressors throughout lifetime and has been associated with several adverse health outcomes. It is hypothesized that people with low socioeconomic status (SES) are exposed to higher chronic stress and have therefore greater levels of allostatic load. OBJECTIVE: To assess the association of receiving social transfers and low education with allostatic load. METHODS: We included 3589 participants (1812 women) aged over 35years and under retirement age from the population-based CoLaus study (Lausanne, Switzerland, 2003-2006). We computed an allostatic load index aggregating cardiovascular, metabolic, dyslipidemic and inflammatory markers. A novel index additionally including markers of oxidative stress was also examined. RESULTS: Men with low vs. high SES were more likely to have higher levels of allostatic load (odds ratio (OR)=1.93/2.34 for social transfers/education, 95%CI from 1.45 to 4.17). The same patterns were observed among women. Associations persisted after controlling for health behaviors and marital status. CONCLUSIONS: Low education and receiving social transfers independently and cumulatively predict high allostatic load and dysregulation of several homeostatic systems in a Swiss population-based study. Participants with low SES are at higher risk of oxidative stress, which may justify its inclusion as a separate component of allostatic load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidemiological and biochemical studies show that the sporadic forms of Alzheimer's disease (AD) are characterized by the following hallmarks: (a) An exponential increase with age; (b) Selective neuronal vulnerability; (c) Inverse cancer comorbidity. The present article appeals to these hallmarks to evaluate and contrast two competing models of AD: the amyloid hypothesis (a neuron-centric mechanism) and the Inverse Warburg hypothesis (a neuron-astrocytic mechanism). We show that these three hallmarks of AD conflict with the amyloid hypothesis, but are consistent with the Inverse Warburg hypothesis, a bioenergetic model which postulates that AD is the result of a cascade of three events-mitochondrial dysregulation, metabolic reprogramming (the Inverse Warburg effect), and natural selection. We also provide an explanation for the failures of the clinical trials based on amyloid immunization, and we propose a new class of therapeutic strategies consistent with the neuroenergetic selection model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Redox-dysregulation represents a common pathogenic mechanism in schizophrenia (SZ) and bipolar disorder (BP). It may in part arise from a genetically compromised synthesis of glutathione (GSH), the major cellular antioxidant and redox-regulator. Allelic variants of the genes coding for the rate-limiting GSH synthesizing enzyme glutamate-cysteine-ligase modifier (GCLM) and/or catalytic (GCLC) subunit have been associated with SZ and BP. Using mice knockout (KO) for GCLM we have previously shown that impaired GSH synthesis is associated with morphological, functional and neurochemical anomalies similar to those in patients. Here we asked whether GSH deficit is also associated with SZ- and BP-relevant behavioral and cognitive anomalies. Accordingly, we subjected young adult GCLM-wildtype (WT), heterozygous and KO males to a battery of standard tests. Compared to WT, GCLM-KO mice displayed hyperlocomotion in the open field and forced swim test but normal activity in the home cage, suggesting that hyperlocomotion was selective to environmental novelty and mildly stressful situations. While spatial working memory and latent inhibition remained unaffected, KO mice showed a potentiated hyperlocomotor response to an acute amphetamine injection, impaired sensorymotor gating in the form of prepulse inhibition and altered social behavior compared to WT. These anomalies resemble important aspects of both SZ and the manic component of BP. As such our data support the notion that redox-dysregulation due to GSH deficit is implicated in both disorders. Moreover, our data propose the GCLM-KO mouse as a valuable model to study the behavioral and cognitive consequences of redox dysregulation in the context of psychiatric disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An inflammatory response initiated by the NLRP3 inflammasome is triggered by a variety of situations of host 'danger', including infection and metabolic dysregulation. Previous studies suggested that NLRP3 inflammasome activity is negatively regulated by autophagy and positively regulated by reactive oxygen species (ROS) derived from an uncharacterized organelle. Here we show that mitophagy/autophagy blockade leads to the accumulation of damaged, ROS-generating mitochondria, and this in turn activates the NLRP3 inflammasome. Resting NLRP3 localizes to endoplasmic reticulum structures, whereas on inflammasome activation both NLRP3 and its adaptor ASC redistribute to the perinuclear space where they co-localize with endoplasmic reticulum and mitochondria organelle clusters. Notably, both ROS generation and inflammasome activation are suppressed when mitochondrial activity is dysregulated by inhibition of the voltage-dependent anion channel. This indicates that NLRP3 inflammasome senses mitochondrial dysfunction and may explain the frequent association of mitochondrial damage with inflammatory diseases.