897 resultados para DNA Sequence, Hidden Markov Model, Bayesian Model, Sensitive Analysis, Markov Chain Monte Carlo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present different ofrailtyo models to analyze longitudinal data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. Assuming a CD4 counting data set in HIV-infected patients, we develop a hierarchical Bayesian analysis considering the different proposed models and using Markov Chain Monte Carlo methods. We also discuss some Bayesian discrimination aspects for the choice of the best model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a hierarchical Bayesian analysis for a predator-prey model applied to ecology considering the use of Markov Chain Monte Carlo methods. We consider the introduction of a random effect in the model and the presence of a covariate vector. An application to ecology is considered using a data set related to the plankton dynamics of lake Geneva for the year 1990. We also discuss some aspects of discrimination of the proposed models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi utilizada uma análise de segregação com o uso da inferência Bayesiana para estimar componentes de variância e verificar a presença de genes de efeito principal (GEP) influenciando duas características de carcaça: gordura intramuscular (GIM), em %, e espessura de toucinho (ET), em mm; e uma de crescimento, ganho de peso (g/dia) dos 25 aos 90 kg de peso vivo (GP). Para este estudo, foram utilizadas informações de 1.257 animais provenientes de um delineamento de F2, obtidos do cruzamento de suínos machos Meishan e fêmeas Large White e Landrace. No melhoramento genético animal, os modelos poligênicos finitos (MPF) podem ser uma alternativa aos modelos poligênicos infinitesimais (MPI) para avaliação genética de características quantitativas usando pedigrees complexos. MPI, MPF e MPI combinado com MPF foram empiricamente testados para se estimar componentes de variâncias e número de genes no MPF. Para a estimação de médias marginais a posteriori de componentes de variância e de parâmetros, foi utilizada uma metodologia Bayesiana, por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC), via Amostrador de Gibbs e Reversible Jump Sampler (Metropolis-Hastings). em função dos resultados obtidos, pode-se evidenciar quatro GEP, sendo dois para GIM e dois para ET. Para ET, o GEP explicou a maior parte da variação genética, enquanto, para GIM, o GEP reduziu significativamente a variação poligênica. Para a variação do GP, não foi possível determinar a influência do GEP. As herdabilidades estimadas ajustando-se MPI para GIM, ET e GP foram de 0,37; 0,24 e 0,37, respectivamente. Estudos futuros com base neste experimento que usem marcadores moleculares para mapear os genes de efeito principal que afetem, principalmente GIM e ET, poderão lograr êxito.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O conhecimento do genoma pode auxiliar na identificação de regiões cromossômicas e, eventualmente, de genes que controlam características quantitativas (QTLs) de importância econômica. em um experimento com 1.129 suínos resultantes do cruzamento entre machos da raça Meishan e fêmeas Large White e Landrace, foram analisadas as características gordura intramuscular (GIM), em %, e ganho dos 25 aos 90 kg de peso vivo (GP), em g/dia, em 298 animais F1 e 831 F2, e espessura de toucinho (ET), em mm, em 324 F1 e 805 F2. Os animais das gerações F1 e F2 foram tipificados com 29 marcadores microsatélites. Estudou-se a ligação entre os cromossomos 4, 6 e 7 com GIM, ET e GP. Análises de QTL utilizando-se metodologia Bayesiana foram aplicadas mediante três modelos genéticos: modelo poligênico infinitesimal (MPI); modelo poligênico finito (MPF), considerando-se três locos; e MPF combinado com MPI. O número de QTLs, suas respectivas posições nos três cromossomos e o efeito fenotípico foram estimados simultaneamente. Os sumários dos parâmetros estimados foram baseados nas distribuições marginais a posteriori, obtidas por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC). Foi possível evidenciar dois QTLs relacionados a GIM nos cromossomos 4 e 6 e dois a ET nos cromossomos 4 e 7. Somente quando se ajustou o MPI, foram observados QTLs no cromossomo 4 para ET e GIM. Não foi possível detectar QTLs para a característica GP com a aplicação dessa metodologia, o que pode ter resultado do uso de marcadores não informativos ou da ausência de QTLs segregando nos cromossomos 4, 6 e 7 desta população. Foi evidenciada a vantagem de se analisar dados experimentais ajustando diferentes modelos genéticos; essas análises ilustram a utilidade e ampla aplicabilidade do método Bayesiano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The Brazilian population is mainly descendant from European colonizers, Africans and Native Americans. Some Afro-descendants lived in small isolated communities since the slavery period. The epidemiological status of HBV infection in Quilombos communities from northeast of Brazil remains unknown. The aim of this study was to characterize the HBV genotypes circulating inside a Quilombo isolated community from Maranhão State, Brazil. Methods Seventy-two samples from Frechal Quilombo community at Maranhão were collected. All serum samples were screened by enzyme-linked immunosorbent assays for the presence of hepatitis B surface antigen (HBsAg). HBsAg positive samples were submitted to DNA extraction and a fragment of 1306 bp partially comprising HBsAg and polymerase coding regions (S/POL) was amplified by nested PCR and its nucleotide sequence was determined. Viral isolates were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 320). Sequences were aligned using Muscle software and edited in the SE-AL software. Bayesian phylogenetic analyses were conducted using Markov Chain Monte Carlo (MCMC) method to obtain the MCC tree using BEAST v.1.5.3. Results Of the 72 individuals, 9 (12.5%) were HBsAg-positive and 4 of them were successfully sequenced for the 1306 bp fragment. All these samples were genotype A1 and grouped together with other sequences reported from Brazil. Conclusions The present study represents the first report on the HBV genotypes characterization of this community in the Maranhão state in Brazil where a high HBsAg frequency was found. In this study, we reported a high frequency of HBV infection and the exclusive presence of subgenotype A1 in an Afro-descendent community in the Maranhão State, Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.