910 resultados para DIFFERENT ADHESIVE SYSTEMS
Resumo:
Objective: To compare baseline cardiovascular risk management between people recruited from two different healthcare systems, to a research trial of an intervention to optimize secondary prevention. Design: Cross-sectional study. Setting: General practices, randomly selected: 16 in Northern Ireland (NI) (UK NHS, ‘strong’ infrastructure); 32 in Republic of Ireland (RoI) (mixed healthcare economy, less infrastructure). Patients: 903 (mean age 67.5 years; 69.9% male); randomly selected, known coronary heart disease. Main outcome measures: Blood pressure, cholesterol, medications; validated questionnaires for diet (DINE), exercise (Godin), quality of life (SF12); healthcare usage. Results: More RoI than NI participants had systolic BP>140 mmHg (37% v 28%, p=0.01) and cholesterol >5mmol/l (24% v 17%, p=0.02): RoI mean systolic BP was higher (139 v 132 mm Hg). More RoI participants reported a high fibre intake (35% v 23%), higher levels of physical activity (62% v 44%), and better physical and mental health (SF12); they had more GP (5.6 v 4.4) and fewer nurse visits (1.6 v 2.1) in the previous year. Fewer in RoI (55% v 70%) were prescribed B blockers. Both groups’ ACE inhibitor (41%; 48%) prescribing was similar; high proportions were prescribed statins (84%; 85%) and aspirin (83%; 77%). Conclusions Blood pressure and cholesterol are better controlled among patients in a primary healthcare system with a ‘strong’ infrastructure supporting computerization and rewarding measured performance but this is not associated with healthier lifestyle or better quality of life. Further exploration of differences in professionals’ and patients’ engagement in secondary prevention in different healthcare systems is needed.
Resumo:
The objective of this article is to review the scientific literature on airflow distribution systems and ventilation effectiveness to identify and assess the most suitable room air distribution methods for various spaces. In this study, different ventilation systems are classified according to specific requirements and assessment procedures. This study shows that eight ventilation methods have been employed in the built environment for different purposes and tasks. The investigation shows that numerous studies have been carried out on ventilation effectiveness but few studies have been done regarding other aspects of air distribution. Amongst existing types of ventilation systems, the performance of each ventilation methods varies from one case to another due to different usages of the ventilation system in a room and the different assessment indices used. This review shows that the assessment of ventilation effectiveness or efficiency should be determined according to each task of the ventilation system, such as removal of heat, removal of pollutant, supply fresh air to the breathing zone or protecting the occupant from cross infection. The analysis results form a basic framework regarding the application of airflow distribution for the benefit of designers, architects, engineers, installers and building owners.
Resumo:
The purpose of this study was to evaluate stress distribution in the hybrid layer produced by two adhesive systems using three-dimensional finite element analysis (FEA). Four FEA models (M) were developed: Mc, a representation of a dentin specimen (41 x 41 x 82 mu m) restored with composite resin, exhibiting the adhesive layer, hybrid layer (HL), resin tags, peritubular dentin, and intertubular dentin to simulate the etch-and-rinse adhesive system; Mr, similar to Mc, with lateral branches of the adhesive; Ma, similar to Mc, however without resin tags and obliterated tubule orifice, to simulate the environment for the self-etching adhesive system; Mat, similar to Ma, with tags. A numerical simulation was performed to obtain the maximum principal stress (sigma(max)). The highest sigma(max) in the HL was observed for the etch-and-rinse adhesive system. The lateral branches increased the sigma(max) in the HL. The resin tags had a little influence on stress distribution with the self-etching system. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).
Resumo:
Purpose:This study evaluated the microtensile bond strength of two resin cements to dentin either with their corresponding self-etching adhesives or employing the three-step etch-and-rinse technique. The null hypothesis was that the etch-and-rinse adhesive system would generate higher bond strengths than the self-etching adhesives.Materials and Methods:Thirty-two human molars were randomly divided into four groups (N = 32, n = 8/per group): G1) ED Primer self-etching adhesive + Panavia F; G2) All-Bond 2 etch-and-rinse adhesive + Panavia F; G3) Multilink primer A/B self-etching adhesive + Multilink resin cement; G4) All-Bond 2 + Multilink. After cementation of composite resin blocks (5 x 5 x 4 mm), the specimens were stored in water (37 degrees C, 24 hours), and sectioned to obtain beams (+/- 1 mm2 of adhesive area) to be submitted to microtensile test. The data were analyzed using 2-way analysis of variance and Tukey's test (alpha = 0.05).Results:Although the cement type did not significantly affect the results (p = 0.35), a significant effect of the adhesive system (p = 0.0001) was found on the bond strength results. Interaction terms were not significant (p = 0.88751). The etch-and-rinse adhesive provided significantly higher bond strength values (MPa) with both resin cements (G2: 34.4 +/- 10.6; G4: 33.0 +/- 8.9) compared to the self-etching adhesive systems (G1: 19.8 +/- 6.6; G3: 17.8 +/- 7.2) (p < 0.0001). Pretest failures were more frequent in the groups where self-etching systems were used.Conclusion:Although the cement type did not affect the results, there was a significant effect of changing the bonding strategy. The use of the three-step etch-and-rinse adhesive resulted in significantly higher bond strength for both resin cements on dentin.CLINICAL SIGNIFICANCEDual polymerized resin cements tested could deliver higher bond strength to dentin in combination with etch-and-rinse adhesive systems as opposed to their use in combination with self-etching adhesives.(J Esthet Restor Dent 22:262-269, 2010).
Resumo:
Purpose: This study evaluated the bond strength of two etch-and-rinse adhesive systems (two- and three-step) and a self-etching system to Coronal and root canal dentin.Materials and Methods: The root canals of 30 human incisors and canines were instrumented and prepared with burs. The posts used for luting were duplicated with dual resin cement (Duo-link) inside Aestheti Plus #2 molds. Thus, three groups were formed (n = 10) according to the adhesive system employed: All-Bond 2 (TE3) + resin cement post (rcp) + Duo-link (DI); One-Step Plus (TE2) + rcp + DI; Tyrian/One-Step Plus (SE) + rcp + DI. Afterwards, 8 transverse sections (1.5 mm) were cut from 4 mm above the CEJ up to 4 mm short of the root canal apex, comprising coronal and root canal dentin. The sections were submitted to push-out testing in a universal testing machine EMIC (1 mm/min). Bond strength data were analyzed with two-way repeated measures ANOVA and Tukey's test (p < 0.05).Results: The relationship between the adhesives was not the same in the different regions (p < 0.05). Comparison of the means achieved with the adhesives in each region (Tukey; p < 0.05) revealed that TE3 (mean standard deviation: 5.22 +/- 1.70) was higher than TE2 (2.60 +/- 1.74) and SE (1.68 +/- 1.85).Conclusion: Under the experimental conditions, better bonding to dentin was achieved using the three-step etch-and-rinse system, especially in the coronal region. Therefore, the traditional etch-and-rinse three-step adhesive system seems to be the best choice for teeth needing adhesive endodontic restorations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the micro-shear bond strength of 5 adhesive systems to enamel, one single-bottle acid-etch adhesive (O), two self-etching primers (P) and two all-in-one self-etching adhesives (S). Method: Sixty premolar enamel surfaces (buccal or lingual) were ground flat with 400- and 600-grit SiC papers and randomly divided into 5 groups (n=12), according to the adhesive system.. SB2 - Single Bond 2 (O); CSE - Clearfil SE Bond (P); ADS - AdheSE (P); PLP - Adper Prompt L-Pop (S); XE3 - Xeno III (S). Tygon tubing (inner diameter of 0.8mm) restricted the bonding area to obtain the resin composite (Z250) cylinders. After storage in distilled water at 37 degrees C for 24h and thermocycling, micro-shear testing was performed (crosshead speed of 0.5mm/min). Data were submitted to one-way ANOVA and Tukey test (a=5%). Samples were also subjected to stereomicroscopic and SEM evaluations after micro-shear testing. Mean bond strength values (MPa +/- SD) and the results of Tukey test were: SB2: 36.36(+/- 3.34)a; ADS: 33.03(+/- 7.83)a; XE3: 32.76(+/- 5.61)a; CSE: 30.61(+/- 6.68)a; PLP: 22.17(+/- 6.05)b. Groups with the same letter were not statistically different. It can be concluded that no significant difference was there between SB2, ADS, XE3 and CSE, in spite of different etching patterns of these adhesives. Only PLP presented statistically lower bond strengths compared with others. J Clin Pediatr Dent 35(3): 301-304, 2011
Resumo:
Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min(-1)). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). Results: the anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7 +/- 7.1(a); PB+Z100 = 23.8 +/- 5.7(a)). However, with use of the chemically activated composite (B2B), PB (7.8 +/- 3.6(b) MPa) showed significantly lower dentin bond strengths than OS (32.2 +/- 7.6(a)). Conclusion: the low pH of the adhesive system can affect the bond of chemically activated composite to dentin. on the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study subjected two self-adhesive resin cements and two conventional resin cements to dry and aging conditions, to compare their microtensile bond strengths (MTBS) to dentin. Using four different luting systems (n = 10), 40 composite resin blocks (each 5x5x4 mm) were cemented to flat human crown dentin surfaces. The specimens were stored in water for 24 hours (37°C), at which point each specimen was sectioned along two axes to obtain beams that were divided randomly into two groups: dry samples, which were tested immediately, and samples that were subjected to accelerated aging conditions (12, 000 thermocycles followed by storage for 150 days). The μTBS results were affected significantly by the luting system used (P < 40001). Only the μTBS of Rely-X Unicem was reduced significantly after aging; the μTBS remained stable or increased for the other self-adhesive resin cement and the two conventional cements.
Resumo:
Besides possessing good mechanical properties, dental materials should present a good biological behavior and should not injure the involved tissues. Bond strength and biocompatibility are both highly significant properties of dentin adhesives. For that matter, these properties of four generations of adhesive systems (Multi-Purpose/Single Bond/SE Plus/Easy Bond) were evaluated.Eighty bovine teeth had their dentin exposed (500- and 200-mu m thickness). Adhesive was applied on the dentin layer of each specimen. Following that, the microshearing test was performed for all samples. A dentin barrier test was used for the cytotoxicity evaluation. Cell cultures (SV3NeoB) were collected from testing materials by means of 200- or 500-mu m-thick dentin slices and placed in a cell culture perfusion chamber. Cell viability was measured 24 h post-exposition by means of a photometrical test (MTT test).The best bonding performance was shown by the single-step adhesive Easy Bond (21 MPa, 200 mu m; 27 MPa, 500 mu m) followed by Single Bond (15.6 MPa, 200 mu m; 23.4 MPa, 500 mu m), SE Plus (18.2 MPa, 200 mu m; 20 MPa, 500 mu m), and Multi-Purpose (15.2 MPa, 200 mu m; 17.9 MPa, 500 mu m). Regarding the cytotoxicity, Multi-Purpose slightly reduced the cell viability to 92 % (200 mu m)/93 % (500 mu m). Single Bond was reasonably cytotoxic, reducing cell viability to 71 % (200 mu m)/64 % (500 mu m). The self-etching adhesive Scotchbond SE decreased cell viability to 85 % (200 mu m)/71 % (500 mu m). Conversely, Easy Bond did not reduce cell viability in this test, regardless of the dentin thickness.Results showed that the one-step system had the best bond strength performance and was the least toxic to pulp cells. In multiple-step systems, a correct bonding technique must be done, and a pulp capping strategy is necessary for achieving good performance in both properties.The study showed a promising system (one-step self-etching), referring to it as a good alternative for specific cases, mainly due to its technical simplicity and good biological responses.
Resumo:
Objective: The aim of this study to investigate the effects of different polymerization protocols on the cuspal movement in class II composite restorations. Materials and methods: Human premolar teeth were prepared with class II cavities and then restored with composite and three-step and two-step etch-and-rinse adhesive systems under different curing techniques (n = 10). It was used a lightemittingdiode curing unit and the mode of polymerization were: standard (exposure for 40 seconds at 700 mW/cm2), pulse-delay (initial exposure for 6 seconds at 350 mW/cm2 followed by a resting period of 3 minutes and a final exposure of 37 seconds at 700 mW/cm2) and soft-start curing (exposure 10 seconds at 350 mW/cm2 and 35 seconds at 700 mW/cm2). The cuspal distance (µm) was measured before and after the restorative procedure and the difference was recorded as cuspal movement. The data were submitted to two-way ANOVA and Bonferroni test (p < 0.05). Results: The type of adhesive system did not influenced the cuspal movement for all the curing methods. Standard protocol showed the highest values of cuspal movement and was statistically different from the pulse-delay and soft-start curing modes. Conclusion: Although the cuspal displacement was not completely avoided, alternative methods of photocuring should be considered to minimize the clinical consequences of composites contraction stress.
Resumo:
OBJECTIVE: The purpose of this study was to assess by means of scanning electron microscopy (SEM) the remaining adhesive interface after debonding orthodontic attachments bonded to bovine teeth with the use of hydrophilic and hydrophobic primers under different dental substrate moisture conditions. MATERIAL AND METHODS: Twenty mandibular incisors were divided into four groups (n=5). In Group I, bracket bonding was performed with Transbond MIP hydrophilic primer and Transbond XT adhesive paste applied to moist substrate, and in Group II a bonding system comprising Transbond XT hydrophobic primer and adhesive paste was applied to moist substrate. Brackets were bonded to the specimens in Groups III and IV using the same adhesive systems, but on dry dental enamel. The images were qualitatively assessed by SEM. RESULTS: The absence of moisture in etched enamel enabled better interaction between bonding materials and the adamantine structure. The hydrophobic primer achieved the worst micromechanical interlocking results when applied to a moist dental structure, whereas the hydrophilic system proved versatile, yielding acceptable results in moist conditions and excellent interaction in the absence of contamination. CONCLUSION: The authors assert that the best condition for the application of primers to dental enamel occurs in the absence of moisture.
Resumo:
Root canal preparation may damage NiTi instruments resulting in wear and deformation. The aim of this study was to make a comparative evaluation of the surface topography of the cervical third of four different rotary systems, before and after being used twelve times, in 1.440 resin blocks with simulated root canals with standardized 45 degrees curvatures, and analyzed by atomic force microscopy AFM. The blocks were divided into four groups and prepared according to the manufacturers recommendations: Group 1 - K3 (R); Group 2 - Protaper Universal (R); Group 3 - Twisted Files (R) and Group 4 - Biorace (R). After each preparation, the instruments were washed and autoclaved. A total of 240 instruments were selected, being 30 new instruments and 30 after having been used for the 12th time, from each group. These instruments were analyzed by AFM and for quantitative evaluation, the mean RMS (Root mean square) values of the cervical third of the specimens from the four groups were used. The result showed that all the rotary files used for the 12th time suffered wear with change in the topography of the cervical region of the active portion of the file (ANOVA p < 0.01). Classifying the specimens in increasing order, from the least to the greatest wear suffered, Group 3 (2.8993 nm) presented the least wear, followed by Group 4 (12.2520 nm), Group 1 (36.0043 nm) and lastly, Group 2 (59.8750 nm) with the largest amount of cervical surface wear. Microsc. Res. Tech. 75:97-102, 2012. (c) 2011 Wiley Periodicals, Inc.