965 resultados para DER-WAALS INTERACTION
Resumo:
We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.
Resumo:
An apolar synthetic analog of the first 10 residues at the NH2-terminal end of zervamicin IIA crystallizes in the triclinic space group P1 with cell dimensions a = 10.206 +/- 0.002 A, b = 12.244 +/- 0.002 A, c = 15.049 +/- 0.002 A, alpha = 93.94 +/- 0.01 degrees, beta = 95.10 +/- 0.01 degrees, gamma = 104.56 +/- 0.01 degrees, Z = 1, C60H97N11O13 X 2H2O. Despite the relatively few alpha-aminoisobutyric acid residues, the peptide maintains a helical form. The first intrahelical hydrogen bond is of the 3(10) type between N(3) and O(0), followed by five alpha-helix-type hydrogen bonds. Solution 1H NMR studies in chloroform also favor a helical conformation, with seven solvent-shielded NH groups. Continuous columns are formed by head-to-tail hydrogen bonds between the helical molecules along the helix axis. The absence of polar side chains precludes any lateral hydrogen bonds. Since the peptide crystallizes with one molecule in a triclinic space group, aggregation of the helical columns must necessarily be parallel rather than antiparallel. The packing of the columns is rather inefficient, as indicated by very few good van der Waals' contacts and the occurrence of voids between the molecules.
Resumo:
Recent work of Jones et al. giving the long-range behaviour of the pair correlation function is used to confirm that the critical ratio Pc/nckBTc = 1/2 in the Born-Green theory. This deviates from experimental results on simple insulating liquids by more than the predictions of the van der Waals equation of state. A brief discussion of conditions for thermodynamic consistency, which the Born-Green theory violates, is then given. Finally, the approach of the Ornstein-Zernike correlation function to its critical point behaviour is discussed within the Born-Green theory.
Resumo:
Oxyphenbutazone, C19H20N203, a metabolite and perhaps the active form of phenylbutazone, is a widely used non-narcotic analgesic and anti-inflammatory pyrazolidinedione derivative. The monohydrate of the compound crystallizes in the triclinic space group Pi with two molecules in a unit cell of dimensions a -- 9.491 (4), b = 10.261 (5), c = 11.036 (3)A and ¢~ = 72.2 (1), fl = 64.3 (1), 7 = 73.0 (1) °. The structure was solved by direct methods and refined to an R value of 0.107 for 1498 observed reflections. The butyl group in the molecule is disordered. The hydroxyl group occupies two sites with unequal occupancies. On account of the asymmetry at the two N atoms and one of the C atoms in the central five-membered ring, the molecule can exist in eight isomeric states, of which four are sterically unfavourable. The disorder in the position of the hydroxyl group can be readily explained on the basis of the existence, with unequal abundances, of all four sterically favourable isomers.The bond lengths and angles in the molecule are similar to those in phenylbutazone. The crystal structure is stabilized by van der Waals interactions, and O-H... O hydrogen bonds involving the carbonyl and the hydroxyl groups as well as a water molecule.
Resumo:
The electrical and optical properties of MWCNTs/DNA composite were studied. Electrical conductivity studies reveal that, the increase in CNTs concentration in DNA increases the conductivity. Fourier transformed Infrared (FTIR) spectrum shows that the CNTs are bonded to DNA covalently at the ends and defects sites and the wrapping of DNA on the CNTs is due to van der Waals force.
Resumo:
The crystal and molecular structure of the title compound (1) has been determined by the heavy-atom method from 1038 observed three-dimensional photographic data. Crystals are orthorhombic, with a = 20.07 ± 0.02, b= 10.05 ± 0.02, c= 7.31 ± 0.01 Å, space group P212121, with Z= 4. The structure was refined by block diagonal leastsquares to R 0.099. The conformation of the norbornane moiety is discussed. The seven-membered ring portion of the molecule adopts an approximate chair conformation. The packing of the molecules in the crystal is mainly a consequence of van der Waals interactions.
Resumo:
Proton NMR spectra of phosphacymantrene (π-phospholyl manganese tricarbonyl) orientated in the nematic phases of liquid crystals have been investigated. The derived H-H and H-P direct dipolar coupling constants have been used to determine the relative proton-proton and proton-phosphorus distances. A comparison of the geometrical data of various 5-membered aromatic heterocycles shows that the relative distances between the protons closest to the heteroatom increase with the van der Waals radius of the heteroatom. The results suggest that NMR spectroscopy of orientated molecules can be used to determine van der Waals radii.
Resumo:
Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.
Resumo:
This paper represents the effect of nonlocal scale parameter on the wave propagation in multi-walled carbon nanotubes (MWCNTs). Each wall of the MWCNT is modeled as first order shear deformation beams and the van der Waals interactions between the walls are modeled as distributed springs. The studies shows that the scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or group speed tends to zero). The frequency at which this phenomenon occurs is called the ``Escape frequency''. The analysis shows that, for a given N-walled carbon nanotube (CNT). the nonlocal scaling parameter has a significant effect on the shear wave modes of the N - 1 walls. The escape frequencies of the flexural and shear wave modes of the N-walls are inversely proportionl to the nonlocal scaling parameter. It is also shown that the cut-off frequencies are independent of the nonlocal scale parameter. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.
Resumo:
An analysis of the nature and distribution of disallowed Ramachandran conformations of amino acid residues observed in high resolution protein crystal structures has been carried out. A data set consisting of 110 high resolution, non-homologous, protein crystal structures from the Brookhaven Protein Data Bank was examined. The data set consisted of a total of 18,708 non-Gly residues, which were characterized on the basis of their backbone dihedral angles (φ, ψ). Residues falling outside the defined “broad allowed limits” on the Ramachandran map were chosen and the reportedB-factor value of the α-carbon atom was used to further select well defined disallowed conformations. The conformations of the selected 66 disallowed residues clustered in distinct regions of the Ramachandran map indicating that specific φ, ψ angle distortions are preferred under compulsions imposed by local constraints. The distribution of various amino acid residues in the disallowed residue data set showed a predominance of small polar/charged residues, with bulky hydrophobic residues being infrequent. As a further check, for all the 66 cases non-hydrogen van der Waals short contacts in the protein structures were evaluated and compared with the ideal “Ala-dipeptide” constructed using disallowed dihedral angle (φ, ψ) values. The analysis reveals that short contacts are eliminated in most cases by local distortions of bond angles. An analysis of the conformation of the identified disallowed residues in related protein structures reveals instances of conservation of unusual stereochemistry.
Resumo:
The thermodynamics of the binding of derivatives of galactose and lactose to a 14 kDa beta-galactoside-binding lectin (L-14) from sheep spleen has been studied in 10 nM phosphate/150 mM NaCl/10 mM beta-mercaptoethanol buffer, pH 7.4, and in the temperature range 285-300 K using titration calorimetry. The single-site binding constants of various sugars for the lectin were in the following order: N-acetyl-lactosamine thiodigalactoside > 4-methylumbelliferyl lactoside > lactose > 4-methylumbelliferyl alpha-D-galactoside > methyl-alpha-galactose > methyl-beta-galactose. Reactions were essentially enthalpically driven with the binding enthalpies ranging from -53.8 kJ/mol for thiodigalactoside at 301 K to -2.2 kJ/mol for galactose at 300 K, indicating that hydrogen-bonding and van der Waals interactions provide the major stabilization for these reactions. However, the binding of 4-methylumbelliferyl-alpha-D-galactose displays relatively favourable entropic contributions, indicating the existence of a non-polar site adjacent to the galactose-binding subsite. From the increments in the enthalpies for the binding of lactose, N-acetyl-lactosamine and thiodigalactoside relative to methyl-beta-galactose, the contribution of glucose binding in the subsite adjacent to that for galactose shows that glucose makes a major contribution to the stability of L-14 disaccharide complexes. Observation of enthalpy-entropy compensation for the recognition of saccharides such as lactose by L-14 and the absence of it for monosaccharides such as galactose, together with the lack of appreciable changes in the heat capacity (delta Cp), indicate that reorganization of water plays an important role in these reactions.
Resumo:
The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.
Resumo:
The possible mechanisms of particle aggregation and reduction in liquid limit of the Cochin marine clay on drying are investigated. Mineralogical analysis showed the absence of halloysite in the marine specimen. Experimental results also ruled out the possibility of cementitious material being responsible for particle aggregation and reduction in clay plasticity on drying. The presence of calcium and magnesium as the predominant exchangeable ions and of a high pore salt concentration facilitates strong interparticle attraction and small particle separations; the latter leads to development of significant capillary stresses that permits an intimate contact of particles and growth of strong van der Waals' and Coulombic bonds.
Resumo:
In five-membered aromatic heterocyclic ring systems, a relation between the ratio of the distance between the two α to the two β protons and the covalent radii of the heteroatom is given. It is found that a similar relation is valid for the van der Waals radii also.