998 resultados para DEPENDENT PEROXIDASE
Resumo:
Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.
Resumo:
The properties of CdS nanoparticles incorporated onto mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm when SILAR cycles were fewer than 9. Quantum size effect was found with the CdS sensitized TiO2 films prepared with up to 9 SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 eV to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO2 films in air under illumination (440.6 µW/cm2) showed that the photodegradation rate was up to 85% per day for the sample prepared with 3 SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO4). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular Dynamics (MD) simulation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS11, particle size = 5.6 nm) accounts for 9.6% of the material whereas this value is increased to 19.2% for (CdS3) based smaller particles (particle size: 2.7 nm). Nevertheless, CdS nanoparticles coated with ZnS material showed a significantly enhanced stability under illumination in air. A nearly 100% protection of CdS from photon induced oxidation with a ZnS coating layer prepared using four SILAR cycles, suggesting the formation of a nearly complete coating layer on the CdS nanoparticles.
Resumo:
Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.
Resumo:
Abstract: Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b 5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Nanostructured TiO2 electrodes are employed to probe the electron-transfer process of cytochrome b5 by surface-enhanced resonance Raman spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, the enhancement factor increases, which can be attributed to the electric field enhancement. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Electropolymerized films of teraaminometallophthalocyanines (MTAPc; M = Ni and Co) with amino groups at α- (4α-MTAPc) and β- (4β-MTAPc) positions were prepared on glassy carbon (GC) and indium tin oxide (ITO) electrodes. It was found that the electropolymerization growth rate of 4α-MTAPc was less than that of 4β-MTAPc prepared under identical conditions. Further, the surface coverage of the polymerized 4β-MTAPc film was greater than that of 4α-MTAPc polymerized film. Atomic force microscopy (AFM), X-ray diffraction (XRD) and UV–visible spectroscopic studies were carried out for the polymerized films of 4α-NiIITAPc (p-4α-NiIITAPc) and 4β-NiIITAPc (p-4β-NiIITAPc) alone because both Ni(II) and Co(II) polymerized films show similar trend in electropolymerization and surface coverage values. AFM images show that p-4α-NiIITAPc film contains islands and the thickness of this film was nearly three times less than that of p-4β-NiIITAPc. XRD patterns for the two polymerized films reveal that p-4β-NiIITAPc film was relatively more crystalline than p-4α-NiIITAPc film. Further, the compactness of these films was scrutinized from their barrier properties toward [Fe(CN)6]3−/4− redox couple. The differences in the polymerization growth rate of 4α-MTAPc and 4β-MTAPc, and the thicknesses of the resultant polymerized films suggest that unlike 4β-MTAPc one or two amino groups might have not involved in electropolymerization in the case of 4α-MTAPc. Further, the influence of surface coverage on the electrocatalytic properties of the polymerized films was studied by taking p-4β-CoIITAPc and p-4α-CoIITAPc films as examples. The electrocatalytic oxygen reduction current was almost same at both the electrodes suggesting that only the surface species were involved in the electrocatalytic reduction of oxygen.
Resumo:
Self-assembled monomolecular films of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) and 2,9,16,23-tetraaminophthalocyanatocobalt(II) (4β-CoIITAPc) on Au surfaces were prepared by spontaneous adsorption from solution. These films were characterized by cyclic voltammetry and Raman spectroscopy. Both the surface coverage (Γ) and intensity of the in-plane stretching bands obtained from Raman studies vary for these monomolecular films, indicating different orientations adopted by them on Au surfaces. The 4α-CoIITAPc-modified electrode exhibits an E1/2 of 0.35 V, while the 4β-CoIITAPc-modified electrode exhibits an E1/2 of 0.19 V, corresponding to the CoII/CoIII redox couple in 0.1 M H2SO4. The Γ estimated from the charge associated with the oxidation of Co(II) gives (2.62 ± 0.10) × 10-11 mol cm-2 for 4α-CoIITAPc and (3.43 ± 0.14) × 10-10 mol cm-2 for 4β-CoIITAPc. In Raman spectral studies, the intensity ratio between in-plane phthalocyanine (Pc) stretching and the Au−N stretching was found to be 6.6 for 4β-CoIITAPc, while it was 1.6 for 4α-CoIITAPc. The obtained lower Γ and intensity ratio values suggest that 4α-CoIITAPc adopts nearly a parallel orientation on the Au surface, while the higher Γ and intensity ratio values suggest that 4β-CoIITAPc adopts a perpendicular orientation. The electrochemical reduction of dioxygen was carried out using these differently oriented Pc's in phosphate buffer solution (pH 7.2). Both the Pc's catalyze the reduction of dioxygen; however, the 4α-CoIITAPc-modified electrode greatly reduces the dioxygen reduction overpotential compared to 4β-CoIITAPc-modified and bare Au electrodes.
Resumo:
Soils at many locations that have their origin in volcanic parent material and have undergone extensive weathering often exhibit strong frequency-dependent magnetic susceptibilities. The presence of such susceptibility has a profound effect on electromagnetic induction data acquired in such environments. Their transient electromagnetic response is characterized by a t-1 decay that is strong enough to mask UXO responses. In a field study and associated laboratory work on characterizing the frequency-dependent magnetic susceptibility and its influence on transient electromagnetic data, we collected soil samples on the surface and in soil pits from the Island of Kaho'olawe, Hawaii, and measured their frequency dependent magnetic susceptibilities. We present the details of the field investigation, confirm previous theoretical work with field and laboratory measurements, characterize the susceptibility with a Cole-Cole model, and investigate the response specific to the measured susceptibility.
Resumo:
Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.
Resumo:
Epigenetic changes correspond to heritable modifications of the chromatin structure, which do not involve any alteration of the DNA sequence but nonetheless affect gene expression. These mechanisms play an important role in cell differentiation, but aberrant occurrences are also associated with a number of diseases, including cancer and neural development disorders. In particular, aberrant DNA methylation induced by H. Pylori has been found to be a significant risk factor in gastric cancer. To investigate the sensitivity of different genes and cell types to this infection, a computational model of methylation in gastric crypts is developed. In this article, we review existing results from physical experiments and outline their limitations, before presenting the computational model and investigating the influence of its parameters.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
In transport networks, Origin-Destination matrices (ODM) are classically estimated from road traffic counts whereas recent technologies grant also access to sample car trajectories. One example is the deployment in cities of Bluetooth scanners that measure the trajectories of Bluetooth equipped cars. Exploiting such sample trajectory information, the classical ODM estimation problem is here extended into a link-dependent ODM (LODM) one. This much larger size estimation problem is formulated here in a variational form as an inverse problem. We develop a convex optimization resolution algorithm that incorporates network constraints. We study the result of the proposed algorithm on simulated network traffic.
Resumo:
During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons in the lateral nucleus of the amygdala (LA). One proposed form of cellular plasticity involves structural changes in the number and morphology of dendritic spines...