997 resultados para Cyclic wind loading


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate determination of non-linear shear behaviour and fracture toughness of continuous carbon-fibre/polymer composites remains a considerable challenge. These measurements are often necessary to generate material parameters for advanced computational damage models. In particular, there is a dearth of detailed shear fracture toughness characterisation for thermoplastic composites which are increasingly generating renewed interest within the aerospace and automotive sectors. In this work, carbon fibre (AS4)/ thermoplastic Polyetherketoneketone (PEKK) composite V-notched cross-ply specimens were manufactured to investigate their non-linear response under pure shear loading. Both monotonic and cyclic loading were applied to study the shear modulus degradation and progressive failure. For the first time in the reported literature, we use the essential work of fracture approach to measure the shear fracture toughness of continuous fibre reinforced composite laminates. Excellent geometric similarity in the load-displacement curves was observed for ligament-scaled specimens. The laminate fracture toughness was determined by linear regression, of the specific work of fracture values, to zero ligament thickness, and verified with computational models. The matrix intralaminar fracture toughness (ply level fracture toughness), associated with shear loading was determined by the area method. This paper also details the numerical implementation of a new three-dimensional phenomenological model for carbon fibre thermoplastic composites using the measured values, which is able to accurately represent the full non-linear mechanical response and fracture process. The constitutive model includes a new non-linear shear profile, shear modulus degradation and load reversal. It is combined with a smeared crack model for representing ply-level damage initiation and propagation. The model is shown to accurately predict the constitutive response in terms of permanent plastic strain, degraded modulus as well as load reversal. Predictions are also shown to compare favourably with the evolution of damage leading to final fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O comportamento cíclico das estruturas de betão armado é fortemente condicionado pelo mecanismo de aderência entre o betão e o aço. O escorregamento relativo entre os dois materiais, resultante da degradação progressiva da aderência em elementos solicitados por ações cíclicas, é uma causa frequente de danos graves e até do colapso de estruturas devido à ocorrência de sismos. Entre as estruturas existentes de betão armado que foram dimensionadas e construídas antes da entrada em vigor dos regulamentos sísmicos atuais, muitas foram construídas com armadura lisa, e portanto, possuem fracas propriedades de aderência. A informação disponível na literatura sobre o comportamento cíclico de elementos estruturais de betão armado com armadura lisa é reduzida e a influência das propriedades da aderência associadas a este tipo de armadura no comportamento cíclico das estruturas existentes não se encontra ainda devidamente estudada. O objectivo principal desta tese foi estudar a influência do escorregamento na resposta cíclica de elementos estruturais de betão armado com armadura lisa. Foram realizados ensaios cíclicos em elementos do tipo nó viga-pilar, construídos à escala real, representativos de ligações interiores em edifícios existentes sem pormenorização específica para resistir às ações sísmicas. Para comparação, foi realizado o ensaio de um nó construído com armadura nervurada. Foi ainda realizado o ensaio cíclico de uma viga de betão armado recolhida de uma estrutura antiga. Foram elaborados modelos numéricos não-lineares para simular a resposta dos elementos ensaiados, concentrando especial atenção no mecanismo do escorregamento. Os resultados obtidos no âmbito desta tese contribuem para o avanço do conhecimento sobre o comportamento cíclico de elementos estruturais de betão armado com armadura lisa. As análises numéricas realizadas comprovam a necessidade de incluir os efeitos do escorregamento na modelação numérica deste tipo de estruturas de forma a representar com rigor a sua resposta às ações cíclicas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sismos recentes comprovam a elevada vulnerabilidade dos edifícios existentes de betão armado. A resposta das estruturas aos sismos é fortemente condicionada pelas características da aderência aço-betão, que exibe degradação das propriedades iniciais quando sujeitas a carregamentos cíclicos e alternados. Este fenómeno é ainda mais gravoso para elementos com armadura lisa, predominantes na maioria das estruturas construídas até à década de 70 nos países do sul da Europa. A prática corrente de conceção, dimensionamento e pormenorização das estruturas antigas leva a que tenham características de comportamento e níveis de segurança associados não compatíveis com as exigências atuais. Os estudos realizados sobre o comportamento cíclico de elementos estruturais de betão armado com armadura lisa são ainda insuficientes para a completa caracterização deste tipo de elementos. Esta tese visou a caraterização da relação tensão de aderência versus escorregamento para elementos estruturais com armadura lisa e o estudo da resposta cíclica de pilares e nós viga-pilar de betão armado com armadura lisa. Foram realizados dez séries de ensaios de arrancamento (nove monotónicos e um cíclico) em provetes com varões lisos. Os resultados destes ensaios permitiram propor novas expressões empíricas para a estimativa dos parâmetros usados num modelo disponível na literatura para representação da relação tensão de aderência versus escorregamento. É ainda proposto um novo modelo monotónico para a relação tensão de aderência versus escorregamento que representa melhor a resposta após a resistência máxima de aderência. Uma campanha de ensaios unidirecionais em pilares e nós viga-pilar foi também realizada com o objetivo principal de caracterizar o comportamento cíclico deste tipo de elementos. No total foram realizados oito ensaios em pilares, sete ensaios em nós viga-pilar interiores e seis ensaios em nós viga-pilar exteriores representativos de estruturas antigas de betão armado com armadura lisa. Os resultados experimentais permitiram avaliar a influência do escorregamento e estudar o mecanismo de corte em nós e a evolução dos danos para elementos com armadura lisa. Com base nos resultados experimentais foi proposta uma adaptação na expressão do Eurocódigo 8-3 para o cálculo da capacidade última de rotação de elementos com armadura lisa. Foi também desenvolvido um estudo paramétrico, com diferentes estratégias de modelação não linear, para a simulação da resposta de pilares considerando o escorregamento da armadura lisa. Por último, foi proposto um novo modelo simplificado trilinear para o aço que contempla o efeito do escorregamento da armadura lisa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine-grained aluminium was produced by cryo-rolling and their deformation response under cyclic loading was investigated. Shear banding and grain coarsening were recognized as the main damage mechanism reducing their performance under cyclic loading. However presence of precipitates in ultrafine-grained A1 can actively hinder the operation of cyclic softening mechanisms and increase microstructural stability under cyclic loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large-scale computational and statistical strategy is presented to investigate the development of plastic strain heterogeneities and plasticity induced roughness at the free surface in multicrystalline films subjected to cyclic loading conditions, based on continuum crystal plasticity theory. The distribution of plastic strain in the grains and its evolution during cyclic straining are computed using the finite element method in films with different ratios of in-plane grain size and thickness, and as a function of grain orientation (grains with a {1 1 1} or a {0 0 1} plane parallel to the free surface and random orientations). Computations are made for 10 different realizations of aggregates containing 50 grains and one large aggregate with 225 grains. It is shown that overall cyclic hardening is accompanied by a significant increase in strain dispersion. The case of free-standing films is also addressed for comparison. The overall surface roughness is shown to saturate within 10 to 15 cycles. Plasticity induced roughness is due to the higher deformation of {0 0 1} and random grains and due to the sinking or rising at some grain boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy is one of the most promising renewable energy sources due to its availability and climate-friendly attributes. Large-scale integration of wind energy sources creates potential technical challenges due to the intermittent nature that needs to be investigated and mitigated as part of developing a sustainable power system for the future. Therefore, this study developed simulation models to investigate the potential challenges, in particular voltage fluctuations, zone substation, and distribution transformer loading, power flow characteristics, and harmonic emissions with the integration of wind energy into both the high voltage (HV) and low voltage (LV) distribution network (DN). From model analysis, it has been clearly indicated that influences of these problems increase with the increased integration of wind energy into both the high voltage and low voltage distribution network, however, the level of adverse impacts is higher in the LV DN compared to the HV DN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60âsec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda 4686 emission line (L similar to 310 L-circle dot) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda 4686 light curves. After a short-lived minimum, He II lambda 4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC) technique (named Correli) was applied, as well as SEM (Scanning Electron Microscopy) images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride) (PVC) foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone is continually being removed and replaced through the actions of basic multicellular units (BMU). This constant upkeep is necessary to remove microdamage formed naturally due to fatigue and thus maintain the integrity of the bone. The repair process in bone is targeted, meaning that a BMU travels directly to the site of damage and repairs it. It is still unclear how targeted remodelling is stimulated and directed but it is highly likely that osteocytes play a role. A number of theories have been advanced to explain the microcrack osteocyte interaction but no complete mechanism has been demonstrated. Osteocytes are connected to each other by dendritic processes. The “scissors model" proposed that the rupture of these processes where they cross microcracks signals the degree of damage and the urgency of the necessary repair. In its original form it was proposed that under applied compressive loading, microcrack faces will be pressed together and undergo relative shear movement. If this movement is greater than the width of an osteocyte process, then the process will be cut in a “scissors like" motion, releasing RANKL, a cytokine known to be essential in the formation of osteoclasts from pre-osteoclasts. The main aim of this thesis was to investigate this theoretical model with a specific focus on microscopy and finite element modelling. Previous studies had proved that cyclic stress was necessary for osteocyte process rupture to occur. This was a divergence from the original “scissors model" which had proposed that the cutting of cell material occurred in one single action. The present thesis is the first study to show fatigue failure in cellular processes spanning naturally occurring cracks and it's the first study to estimate the cyclic strain range and relate it to the number of cycles to failure, for any type of cell. Rupture due to shear movement was ruled out as microcrack closing never occurred, as a result of plastic deformation of the bone. Fatigue failure was found to occur due to cyclic tensile stress in the locality of the damage. The strain range necessary for osteocyte process rupture was quantified. It was found that the lower the process strain range the greater the number of cycles to cell process failure. FEM modelling allowed to predict stress in the vicinity of an osteocyte process and to analyse its interaction with the bone surrounding it: simulations revealed evident creep effects in bone during cyclic loading. This thesis confirms and dismisses aspects of the “scissors model". The observations support the model as a viable mechanism of microcrack detection by the osteocyte network, albeit in a slightly modified form where cyclic loading is necessary and the method of rupture is fatigue failure due to cyclic tensile motion. An in depth study was performed focusing on microscopy analysis of naturally occurring cracks in bone and FEM simulation analysis of an osteocyte process spanning a microcrack in bone under cyclic load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on adhesive joints is arousing increasing interest in aerospace industry. Incomplete knowledge of fatigue in adhesively bonded joints is a major obstacle to their application. The prediction of the disbonding growth is yet an open question. This thesis researches the influence of the adhesive thickness on fatigue disbond growth. Experimental testing on specimens with different thickness has been performed. Both a conventional approach based on the strain energy release rate and an approach based on cyclic strain energy are provided. The inadequacy of the former approach is discussed. Outcomes from tests support the idea of correlating the crack growth rate to the cyclic strain energy. In order to push further the study, a 2D finite element model for the prediction of disbond growth under quasi-static loading has been developed and implemented in Abaqus. Numerical simulations have been conducted with different values of the adhesive thickness. The results from tests and simulations are in accordance with each other. According to them, no dependence of disbonding on the adhesive thickness has been evidenced.