1000 resultados para Craniofacial identification
Resumo:
Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor–stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs. Keywords
Resumo:
This study proposes a full Bayes (FB) hierarchical modeling approach in traffic crash hotspot identification. The FB approach is able to account for all uncertainties associated with crash risk and various risk factors by estimating a posterior distribution of the site safety on which various ranking criteria could be based. Moreover, by use of hierarchical model specification, FB approach is able to flexibly take into account various heterogeneities of crash occurrence due to spatiotemporal effects on traffic safety. Using Singapore intersection crash data(1997-2006), an empirical evaluate was conducted to compare the proposed FB approach to the state-of-the-art approaches. Results show that the Bayesian hierarchical models with accommodation for site specific effect and serial correlation have better goodness-of-fit than non hierarchical models. Furthermore, all model-based approaches perform significantly better in safety ranking than the naive approach using raw crash count. The FB hierarchical models were found to significantly outperform the standard EB approach in correctly identifying hotspots.
Resumo:
This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.
Resumo:
A combination of enzymatic digestion and electrospray ionisation mass spectrometry (ESI-MS) was used to characterise bifunctional adducts in which cisplatin is bound to GA base sequences in 8mer and 16mer oligonucleotides that do not contain other, higher affinity binding sites. The extent of formation of bifunctional adducts with GA base sequences was significant, but less than that seen with similar oligonucleotides containing either AG or GG sequences.
Resumo:
Abstract Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10−22). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10−34). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.
Resumo:
Cameron (2004) proposed a three-dimensional model and measure of social identification consisting of cognitive centrality, in-group affect, and in-group ties. This approach has received growing theoretical and empirical support; however, little research has examined how these dimensions of social identification may relate differentially to intergroup outcome behaviors. The current research sought to address this question by examining the possible mediating role the dimensions of social identification on the relationship between prototypicality of group members and the intergroup outcome behaviors of in-group favoritism, out-group derogation, and collective self-esteem. The current study examined university students’ (N = 235) feelings towards students from their own and another local university. Structural equation modeling was used to identify the most appropriate and parsimonious models of these pathways. The results showed support for the utility of measuring social identification using a multidimensional approach with unique meditational pathways emerging for the distinct intergroup behaviors.
Resumo:
We have previously reported the presence of a 70 kDa insulin-like growth factor (IGF)-II-specific binding protein in chicken serum using Western ligand blotting approaches. In order to ascertain the identity of this 70 kDa IGF-II binding species, the protein has been purified from chicken serum using a combination of ion-exchange and gel-permeation chromatography. Interestingly, amino acid sequencing of the purified protein revealed that it has the same N-terminal sequence as chicken vitronectin (VN). The protein has the ability to specifically bind IGF-II and not IGF-I as determined by ligand blotting, cross-linking and competitive binding assay approaches. In addition, the protein binds 125I-des(l-6)-IGF-II, suggesting that the interaction with IGF-II is different to those with other characterized IGF-binding proteins. Importantly, we have ascertained that both human and bovine VN also specifically bind IGF-II. These results are particularly relevant in the light of the recent report that the urokinase-type plasminogen activator receptor, a protein that also binds VN, has been shown to associate with the cation-independent mannose-6-phosphate/GF-II receptor and suggest a possible role for IGF-II in cell adhesion and invasion.
Resumo:
Metastatic melanoma, a cancer historically refractory to chemotherapeutic strategies, has a poor prognosis and accounts for the majority of skin cancer related mortality. Although the recent approval of two new drugs combating this disease, Ipilimumab and Vemurafenib (PLX4032), has demonstrated for the first time in decades an improvement in overall survival; the clinical efficacy of these drugs has been marred by severe adverse immune reactions and acquired drug resistance in patients, respectively. Thus, understanding the etiology of metastatic melanoma will contribute to the improvement of current therapeutic strategies while leading to the development of novel drug approaches. In order to identify recurrently mutated genes of therapeutic relevance in metastatic melanoma, a panel of stage III local lymph node melanomas were extensively characterised using high-throughput genomic technologies. This led to the identification of mutations in TFG in 5% of melanomas from a candidate gene sequencing approach using SNP array analysis, 24% of melanomas with mutations in MAP3K5 or MAP3K9 though unbiased whole-exome sequencing strategies, and inactivating mutations in NF1 in BRAF/NRAS wild type tumours though pathway analysis. Lastly, this thesis describes the development of a melanoma specific mutation panel that can rapidly identify clinically relevant mutation profiles that could guide effective treatment strategies through a personalised therapeutic approach. These findings are discussed in respect to a number of important issues raised by this study including the current limitation of next-generation sequencing technology, the difficulty in identifying ‘driver’ mutations critical to the development of melanoma due to high carcinogenic exposure by UV radiation, and the ultimate application of mutation screening in a personalised therapeutic setting. In summary, a number novel genes involved in metastatic melanoma have been identified that may have relevance for current therapeutic strategies in treating this disease.
Resumo:
Person re-identification involves recognising individuals in different locations across a network of cameras and is a challenging task due to a large number of varying factors such as pose (both subject and camera) and ambient lighting conditions. Existing databases do not adequately capture these variations, making evaluations of proposed techniques difficult. In this paper, we present a new challenging multi-camera surveillance database designed for the task of person re-identification. This database consists of 150 unscripted sequences of subjects travelling in a building environment though up to eight camera views, appearing from various angles and in varying illumination conditions. A flexible XML-based evaluation protocol is provided to allow a highly configurable evaluation setup, enabling a variety of scenarios relating to pose and lighting conditions to be evaluated. A baseline person re-identification system consisting of colour, height and texture models is demonstrated on this database.
Resumo:
BACKGROUND: Demineralized freeze-dried bone allografts (DFDBAs) have been proposed as a useful adjunct in periodontal therapy to induce periodontal regeneration through the induction of new bone formation. The presence of bone morphogenetic proteins (BMPs) within the demineralized matrix has been proposed as a possible mechanism through which DFDBA may exert its biologic effect. However, in recent years, the predictability of results using DFDBA has been variable and has led to its use being questioned. One reason for the variability in tissue response may be attributed to differences in the processing of DFDBA, which may lead to loss of activity of any bioactive substances within the DFDBA matrix. Therefore, the purpose of this investigation was to determine whether there are detectable levels of bone morphogenetic proteins in commercial DFDBA preparations. METHODS: A single preparation of DFDBA was obtained from three commercial sources. Each preparation was studied in triplicate. Proteins within the DFDBA samples were first extracted with 4M guanidinium HCI for seven days at 40 degrees celsius and the residue was further extracted with 4M guanidinium HCL/EDTA for seven days at 40 degrees celsius. Two anti-human BMP-2 and -4 antibodies were used for the detection of the presence of BMP's in the extracts. RESULTS: Neither BMP-2 nor BMP-4 was detected in any of the extracts. When recombinant human BMP-2 and -4 were added throughout the extraction process of DFDBA extraction, not only were intact proteins detected but smaller molecular weight fragments were also noted in the extract. CONCLUSIONS: These results indicate that all of the DFDBA samples tested had no detectable amounts of BMP-2 and -4. In addition, an unknown substance present in the DFDBA may be responsible for degradation of whatever BMPs might be present.
Resumo:
The study presented in this paper reviewed 9,358 accidents which occurred in the U.S. construction industry between 2002 and 2011, in order to understand the relationships between the risk factors and injury severity (e.g. fatalities, hospitalized injuries, or non-hospitalized injuries) and to develop a strategic prevention plan to reduce the likelihood of fatalities where an accident is unavoidable. The study specifically aims to: (1) verify the relationships among risk factors, accident types, and injury severity, (2) determine significant risk factors associated with each accident type that are highly correlated to injury severity, and (3) analyze the impact of the identified key factors on accident and fatality occurrence. The analysis results explained that safety managers’ roles are critical to reducing human-related risks—particularly misjudgement of hazardous situations—through safety training and education, appropriate use of safety devices and proper safety inspection. However, for environment-related factors, the dominant risk factors were different depending on the different accident types. The outcomes of this study will assist safety managers to understand the nature of construction accidents and plan for strategic risk mitigation by prioritizing high frequency risk factors to effectively control accident occurrence and manage the likelihood of fatal injuries on construction sites.
Resumo:
The main cis-acting control regions for replication of the single-stranded DNA genome of maize streak virus (MSV) are believed to reside within an approximately 310 nt long intergenic region (LIR). However, neither the minimum LIR sequence required nor the sequence determinants of replication specificity have been determined experimentally. There are iterated sequences, or iterons, both within the conserved inverted-repeat sequences with the potential to form a stem-loop structure at the origin of virion-strand replication, and upstream of the rep gene TATA box (the rep-proximal iteron or RPI). Based on experimental analyses of similar iterons in viruses from other geminivirus genera and their proximity to known Rep-binding sites in the distantly related mastrevirus wheat dwarf virus, it has been hypothesized that the iterons may be Rep-binding and/or -recognition sequences. Here, a series of LIR deletion mutants was used to define the upper bounds of the LIR sequence required for replication. After identifying MSV strains and distinct mastreviruses with incompatible replication-specificity determinants (RSDs), LIR chimaeras were used to map the primary MSV RSD to a 67 nt sequence containing the RPI. Although the results generally support the prevailing hypothesis that MSV iterons are functional analogues of those found in other geminivirus genera, it is demonstrated that neither the inverted-repeat nor RPI sequences are absolute determinants of replication specificity. Moreover, widely divergent mastreviruses can trans-replicate one another. These results also suggest that sequences in the 67 nt region surrounding the RPI interact in a sequence-specific manner with those of the inverted repeat.