169 resultados para Coprecipitation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide-free olivine gabbro and gabbro, and oxide olivine gabbro and gabbro make up the bulk of the gabbroic suite recovered from Ocean Drilling Program (ODP) Leg 179 Hole 1105A, which lies 1.2 km away from Hole 735B on the eastern transverse ridge of the Atlantis II Fracture Zone, Southwest Indian Ridge. The rocks recovered during Leg 179 show striking similarities to rocks recovered from the uppermost 500 m of Hole 735B during ODP Leg 118. The rocks of the Atlantis platform were likely unroofed as part of the footwall block of a large detachment fault on the inside corner of the intersection of the Southwest Indian Ridge and the Atlantis II Transform at ~11.5 Ma. We analyzed the lithologic, geochemical, and structural stratigraphy of the section. Downhole lithologic variation allowed division of the core into 141 lithologic intervals and 4 main units subdivided on the basis of predominance of oxide gabbroic vs. oxide-free gabbroic rocks. Detailed analyses of whole-rock chemistry, mineral chemistry, microstructure, and modes of 147 samples are presented and clearly show that the gabbroic rocks are of cumulate origin. These studies also indicate that geochemistry results correlate well with downhole magnetic susceptibility and Formation MicroScanner (FMS) resistivity measurements and images. FMS images show rocks with a well-layered structure and significant numbers of mappable layer contacts or compositional contrasts. Downhole cryptic mineral and whole-rock chemical variations depict both "normal" and inverse fine-scale variations on a scale of 10 m to <2 m with significant compositional variation over a short distance within the 143-m section sampled. A Mg# shift in whole-rock or Fo contents of olivine of as much as 20-30 units over a few meters of section is not atypical of the extreme variation in downhole plots. The products of the earliest stages of basaltic differentiation are not represented by any cumulates, as the maximum Fo content was Fo78. Similarly, the extent of fractionation represented by the gabbroic rocks and scarce granophyres in the section is much greater than that represented in the Atlantis II basalts. The abundance of oxide gabbros is similar to that in Hole 735B, Unit IV, which is tentatively correlated as a similar unit or facies with the oxide gabbroic units of Hole 1105A. Oxide phases are generally present in the most fractionated gabbroic rocks and lacking in more primitive gabbroic rocks, and there is a definite progression of oxide abundance as, for example, the Mg# of clinopyroxene falls below 73-75. Coprecipitation of oxide at such early Mg#s cannot be modeled by perfect fractional crystallization. In situ boundary layer fractionation may offer a more plausible explanation for the complex juxtaposition of oxide- and nonoxide-bearing more primitive gabbroic rocks. The geochemical signal may, in part, be disrupted by the presence of mylonitic shear zones, which strike east-west and dip both to the south and north, but predominantly to the south away from the northern rift valley where they formed. Downhole deformation textures indicate increasing average strain and crystal-plastic deformation in units that contain oxides. Oxide-rich zones may represent zones of rheologic weakness in the cumulate section along which mylonitic and foliated gabbroic shear zones nucleate in the solid state at high temperature, or the oxide may be a symptom of former melt-rich zones and hypersolidus flow, as predicted during study of Hole 735B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineralogical and geochemical analyses of alteration products from upper and lower volcanic series recovered during ODP Leg 104 reveal variations both in composition and order of crystallization of clay minerals vesicles and voids filling and replacing glass. These results provide information about successive alteration stages of rocks and interlayered volcaniclastic sediments. The first stage, related to initial basalt-seawater interaction, is characterized by development of Fe-smectites, especially Fe-rich saponite. A second stage of intermittently superimposed subaerial weathering is marked by iron-oxides-halloysite-kaolinite formation. The third episode, interpreted as hydrothermal on the basis of O-isotopic data, is defined by postburial coprecipitation of Fe-poor, Mg-rich saponite and celadonite. A distinct final and pervasive hydrothermal stage, occurring mainly in the lower series and dominated by Al-smectites-zeolites assemblage, indicates changes toward a more reducing alteration environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molybdenum and vanadium were analysed in 9 scediment cores recovered from the continental slope and rise off NW Africa. Additionall chemical and sedimentological parameters as well as isotope stage boundaries were available for the same core profiles from other investigations. Molybdenum, ranging between <1 and 10 ppm, occurs in two associateions, either with organic carbon and sulphides in sediments with reducing conditions or with Mn oxides in oxidized near-surface core sections. Highest values (between 4 and 10 ppm Mo) are found in sulphide-rich core sections deposited during glacial times in a core from 200 m water depth. The possibility of anoxic near-bottom water conditions prevailing at thhis site during certain glacial intervals is discussed. In oxidized near-surface core sections, the diagenetic mobility of Mo becomes evident from strong Mo enrichment together with Mn oxides (values up to 4 ppm Mo). This enrichment is probably due to coprecipitation and/or adsorption of Mo from interstitial water to the diagenetically forming Mn oxides. The close relation between Mo and Corg results in strongly covarying sedimentation rates in both components reaching up to 10 times the rates in glacial compared to interglacial core sections. Vanadium (values between 20 and 100 ppm) does not show clear relations to climate and near-bottom or sediment milieu. It occurs mainly bound to the fine grained terrigenous fraction, associated with aluminium silicates (clay minerals) and iron oxides. Additionally positive covariation of vanadium with phosphorus in most core profiles suggest that some V may be bound to phosphates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavior of molybdenum and manganese is studied in phosphorite samples from shelves, seamounts, and islands of the ocean. In shelf phosphorites molybdenum and manganese contents are 2-128 and 12-1915 ppm, respectively, while the Mo/Mn ratio varies from 0.004 to 4.5. Phosphorites from ocean seamounts impregnated with ferromanganese oxyhydroxides contain 0.84-14.5 ppm Mo and 0.1-17% Mn. The Mo/Mn ratio varies within 0.0008-0.004. Phosphate bearing ferromanganese crusts overlying seamount phosphorites contain 54-798 ppm Mo and 10-20% Mn; the Mo/Mn ratio varies within 0.002-0.005. Corresponding values for most island phosphorites are 0.44-11.2 ppm, 27-287 ppm, and 0.008-0.20. Phosphorites from reduced environment are characterized by relative enrichment in Mo and depletion in Mn, whereas the Mo/Mn ratio reaches maximum values. The ratio decreases with transition to suboxic and oxic conditions. Molybdenum content in recent shelf sediments is commonly higher than that in authigenic phosphorites from these sediments. Recent phosphorite nodules from the Namibian shelf become depleted in Mo and Mn during their lithification, but Pliocene-Pleistocene nodules of similar composition and origin from the same region are enriched in Mo and characterized by variable Mn content. Higher Mo contents in phosphate bearing ferromanganese crusts result from coprecipitation of Mo and Mn from seawater. Unweathered phosphorites on continents and phosphorites from ocean shelves are largely enriched in Mo with the Mo/Mn ratio varying from 0.01 to 1.0. This is an evidence of their formation in reduced conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subcellular localization directed by specific A kinase anchoring proteins (AKAPs) is a mechanism for compartmentalization of cAMP-dependent protein kinase (PKA). Using a two-hybrid screen, a novel AKAP was isolated. Because it interacts with both the type I and type II regulatory subunits, it was defined as a dual specific AKAP or D-AKAP1. Here we report the cloning and characterization of another novel cDNA isolated from that screen. This new member of the D-AKAP family, D-AKAP2, also binds both types of regulatory subunits. A message of 5 kb pairs was detected for D-AKAP2 in all embryonic stages and in all adult tissues tested. In brain, skeletal muscle, kidney, and testis, a 10-kb mRNA was identified. In testis, several small mRNAs were observed. Therefore, D-AKAP2 represents a novel family of proteins. cDNA cloning from a mouse testis library identified the full length D-AKAP2. It is composed of 372 amino acids which includes the R binding fragment, residues 333–372, at its C-terminus. Based on coprecipitation assays, the R binding domain interacts with the N-terminal dimerization domain of RIα and RIIα. A putative RGS domain was identified near the N-terminal region of D-AKAP2. The presence of this domain raises the intriguing possibility that D-AKAP2 may interact with a Gα protein thus providing a link between the signaling machinery at the plasma membrane and the downstream kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein–protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actin cytoskeleton plays a significant role in changes of cell shape and motility, and interactions between the actin filaments and the cell membrane are crucial for a variety of cellular processes. Several adaptor proteins, including talin, maintain the cytoskeleton-membrane linkage by binding to integral membrane proteins and to the cytoskeleton. Layilin, a recently characterized transmembrane protein with homology to C-type lectins, is a membrane-binding site for talin in peripheral ruffles of spreading cells. To facilitate studies of layilin's function, we have generated a layilin-Fc fusion protein comprising the extracellular part of layilin joined to human immunoglobulin G heavy chain and used this chimera to identify layilin ligands. Here, we demonstrate that layilin-Fc fusion protein binds to hyaluronan immobilized to Sepharose. Microtiter plate-binding assays, coprecipitation experiments, and staining of sections predigested with different glycosaminoglycan-degrading enzymes and cell adhesion assays all revealed that layilin binds specifically to hyaluronan but not to other tested glycosaminoglycans. Layilin's ability to bind hyaluronan, a ubiquitous extracellular matrix component, reveals an interesting parallel between layilin and CD44, because both can bind to cytoskeleton-membrane linker proteins through their cytoplasmic domains and to hyaluronan through their extracellular domains. This parallelism suggests a role for layilin in cell adhesion and motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GAL11 gene encodes an auxiliary transcription factor required for full expression of many genes in yeast. The GAL11-encoded protein (Gal11p) has recently been shown to copurify with the holoenzyme of RNA polymerase II. Here we report that Gal11p stimulates basal transcription in a reconstituted transcription system composed of recombinant or highly purified transcription factors, TFIIB, TFIIE, TFIIF, TFIIH, and TATA box-binding protein and core RNA polymerase II. We further demonstrate that each of the two domains of Gal11p essential for in vivo function respectively participates in the binding to the small and large subunits of TFIIE. The largest subunit of RNA polymerase II was coprecipitated by anti-hemagglutinin epitope antibody from crude extract of GAL11 wild type yeast expressing hemagglutinintagged small subunit of TFIIE. Such a coprecipitation of the RNA polymerase subunit was seen but in a greatly reduced amount, if extract was prepared from gal11 null yeast. In light of these findings, we suggest that Gal11p stimulates promoter activity by enhancing an association of TFIIE with the preinitiation complex in the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The X and Y domains of phospholipase C (PLC)-gamma1, which are conserved in all mammalian phosphoinositide-specific PLC isoforms and are proposed to interact to form the catalytic site, have been expressed as individual hexahistidine-tagged fusion proteins in the baculovirus system. Following coinfection of insect cells with recombinant viruses, association of X and Y polypeptides was demonstrated in coprecipitation assays. When enzyme activity was examined, neither domain possessed catalytic activity when expressed alone; however, coexpression of the X and Y polypeptides produced a functional enzyme. This reconstituted phospholipase activity remained completely dependent on the presence of free Ca2+. The specific activity of the X:Y complex was significantly greater (20- to 100-fold) than that of holoPLC-gamma1 and was only moderately influenced by varying the concentration of substrate. The enzyme activities of holoPLC-gamma1 and the X:Y complex exhibited distinct pH optima. For holoPLC-gamma1 maximal activity was detected at pH 5.0, while activity of the X:Y complex was maximal at pH 7.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the molecular cloning of import intermediate associated protein (IAP) 100, a 100-kDa protein of the chloroplast protein import machinery of peas. IAP100 contains two potential alpha-helical transmembrane segments and also behaves like an integral membrane protein. It was localized to the inner chloroplast envelope membrane. Immunoprecipitation experiments using monospecific anti-IAP100 antibodies and a nonionic detergent-generated chloroplast lysate gave the following results. (i) The four integral membrane proteins of the outer chloroplast import machinery were not coprecipitated with IAP100 indicating that the inner and outer membrane import machineries are not coupled in isolated chloroplasts. (ii) the major protein that coprecipitated with IAP100 was identified as stromal chaperonin 60 (cpn60); the association of IAP100 and cpn60 was specific and was abolished when immunoprecipitation was carried out in the presence of ATP. (iii) In a lysate from chloroplasts that had been preincubated for various lengths of time in an import reaction with radiolabeled precursor (pS) of the small subunit of Rubisco, we detected coimmunoprecipitation of IAP100, cpn60, and the imported mature form (S) of precursor. Relative to the time course of import, coprecipitation of S first increased and then decreased, consistent with a transient association of the newly imported S with the chaperonin bound to IAP100. These data suggest that IAP100 serves in recruiting chaperonin for folding of newly imported proteins.