964 resultados para Coplanar Electrodes
Resumo:
The present work illustrates the effect of electrolyte composition on the self-organized TiO2 nanotube arrays electrode preparation. The influence of structural and surface morphology of the TiO2 nanotube-like anode on their photoactivity and photoelectrocatalytic performance was also investigated. TiO2 nanotubular array electrodes are grown by anodization of Ti foil in 0.25wt % NH4F/glycerol/water, but nanowires can be obtained in 4% HF-DMSO as supporting electrolyte, even when both are subjected to electrochemical anodization at 30V during 50 h. The morphological characteristics are analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FEG-SEM). The electrodes were successfully applied in photoelectrocatalytic oxidation of 4,4'-oxydianiline (ODAN) in aqueous solution, as a model of a harmful pollutant. Complete removal of the aromatic amine was obtained after 3 hours of photoelectrocatalytic treatment on nanotubular arrays electrodes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 x 10(-21) mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The application of adsorptive stripping potentiometry to the reductive detection of nucleic acids at mercury electrodes is reported. Compared to analogous voltammetric stripping modes, constant current potentiometric stripping analysis (PSA) effectively addresses the hydrogen discharge background problem, and hence greatly improves the characteristics of the superimposed cytosine/adenine (CA) reduction peak. Compared to earlier schemes for trace measurements of nucleic acids at mercury or carbon electrodes that rely on anodic signals arising from the guanine residue, convenient quantitation can now be carried out in connection with the cytosine and adenine residues. Variables influencing the adsorptive PSA response are explored and optimized. With five minute accumulation, the detection limits for tRNA, ssDNA and dsDNA are 30 mu g l(-1), 60 mu g l(-1) and 2 mg l(-1), respectively. Such different values reflect the strong dependence of the PSA CA signal upon the nucleic-acid structure. This allows the quantitation of ssDNA or tRNA in the presence of dsDNA, and offers new possibilities for electrochemical studies of DNA structure and interactions.
Resumo:
The electrochemical behavior of SnO2-SbOx, based electrodes, with and without the addition of RuO2, was studied by cyclic voltammetry, service life measurements and electrochemical impedance spectroscopy in 0.5 M H2SO4 the physical characteristics of these materials were investigated using SEM, EDX and XRD. The resulting cyclic voltammograms obtained using SnO2-SbOx, and SnO2-SbOx-RuO2(x), x = 30, 5, 1 and 0.4 % showed that the OER overpotential decreased with the addition of RuO2. In the repetitive triangular potential voltammetry applied to the SnO2 electrode without and with RuO2 (1%), a higher anodic current is observed during the first potential scan; it is explained in terms of the oxidation of the Ti substrate. The addition of 1% RuO2 increased the service life from 8 to 20 hours at 10 mAcm(-2), while at 50 mAcm(-2) this increase was from 1 to 8 hours. AC Impedance diagrams obtained for the Ti/SnO2-SbOx and Ti/SnO2-SbOx-RuO2 electrodes at the rest potential and at a potential in the OER region can be explained by a single equivalent circuit containing two elements in series. The results showed that the charge transfer resistance and the resistance of the oxide film are lower in the oxide film containing RuO2. Surface analysis of Ti/SnO2-SbOx, revealed that it is relatively porous and formed by clusters of small particles. The Ti/SnO2-SbOx-RuO2 (1%) film is more compact, though. XRD analysis showed that a Sn1-xTixO2 oxide is formed on the Ti/SnO2-SbOx with 1% and without RuO2 electrodes.
Resumo:
The electrochemical response of chalcopyrite was studied using electrochemical noise analysis (ENA). The assay was carried out under constant aeration using 30 mL in two electrochemical cells containing iron-free mineral salts solution. These cells were initially monitored for 56 hours, After 72 hours, 7.25x 10(10) cells mL(-1) of A, ferrooxidans strain LR were added in both cells and monitored until 128 h. Subsequent to this period, 0.927 mmol L-1 of silver ions and 400 mmol L-1 of chloride ions were added each one separately. Both conditions were monitored until 168 hours. According to results obtained, it was observed that Cl- ions addition induced an accelerated corrosion process. However, there is a tendency of the system to reach the stationary state due to repassivation of the electrodic surface. In the other side, the Ag+ addition contributed for the maintenance of the oxidant atmosphere, in spite of controversial effect caused by considerable variations in the R-n values, resulting in a instability in the chalcopyrite reactivity.
Resumo:
In this study we describe the electrochemical behavior of 5,10,15,20-tetrakis(2'-aminophenylporphyrin)manganese(III) chloride supported on a glassy carbon electrode, as well as the electrochemical preparation and characterization of thin films based on pyrrole-3-carboxylic acid. The electrocatalytic action of the electrode modified with the Mn(III) porphyrin toward an azo dye was tested, and the characteristic strong interaction between the incorporated metalloporphyrin and RR120 dye was verified. Copyright (c) 2006 Society of Porphyrins & Phthalocyanines.
Resumo:
A method for the total mercury determination in fish and shrimps employing chronopotentiometric stripping analysis on gold film electrodes is described. Fish and shrimp tissues were digested using a microwave oven equipped with closed vessels. We developed a microwave heating program which decomposed all the samples employing diluted nitric acid and hydrogen peroxide. The proposed method was validated by analyzing a certified reference material and then applied for different fish species from fresh water and seawater acquired in local markets of São Paulo city, Brazil. The Brazilian legislation establishes 0.5 and 1 mg per kilogram of fish as upper limit of mercury for omnivorous and predator species, respectively. Except for blue shark tissues, the mercury content was situated below 0.5 mu g g(-1) for all the analyzed samples. The detection limit of the proposed method was calculated as 5 ng g(-1) of sample utilizing 5 minutes of electrodeposition (+300 mV vs. Ag/AgCl) on the gold electrode. (c) 2006 Elsevier Ltd. All rights reserved.