972 resultados para Contaminated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic resins are shown to be effective in removing uranium from contaminated groundwater. Batch and field column tests showed that strong-base anion-exchange resins were more effective in removing uranium from both near-neutral-pH (6.5)- and high-pH (8)-low-nitrate-containing groundwaters, than metal-chelating resins, which removed more uranium from acidic-pH (5)-high-nitrate-containing groundwater from the Oak Ridge Reservation (ORR) Y-12 S-3 Ponds area in Tennessee, USA. Dowex 1-X8 and Purolite A-520E anion-exchange resins removed more uranium from high-pH (8)-low-nitrate-containing synthetic groundwater in batch tests than metal-chelating resins. The Dowex™ 21K anion-exchange resin achieved a cumulative loading capacity of 49.8 mg g-1 before breakthrough in a field column test using near-neutral-pH (6.5)-low-nitrate-containing groundwater. However, in an acidic-pH (5)-high-nitrate-containing groundwater, metal-chelating resins Diphonix and Chelex-100 removed more uranium than anion-exchange resins. In 15 mL of acidic-pH (5)-high-nitrate-containing groundwater spiked with 20 mg L-1 uranium, the uranium concentrations ranged from 0.95 mg L-1 at 1-h equilibrium to 0.08 mg L-1 at 24-h equilibrium for Diphonix and 0.17 mg L-1 at 1-h equilibrium to 0.03 mg L-1 at 24-h equilibrium for Chelex-100. Chelex-100 removed more uranium in the first 10 min in the 100 mL of acidic-(pH 5)-high-nitrate-containing groundwater (~5 mg L-1 uranium); however, after 10 min, Diphonix equaled or out-performed Chelex-100. This study presents an improved understanding of the selectivity and sorption kenetics of a range of ion-exchange resins that remove uranium from both low- and high-nitrate-containing groundwaters with varying pHs..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a thorough site investigation, a biological Sequential Reactive Barrier (SEREBAR), designed to remove Polycyclic Aromatic Hydrocarbons (PAHs) and BTEX compounds, was installed at a Former Manufactured Gas Plant (FMGP) site. The novel design of the barrier comprises, in series, an interceptor and six reactive chambers. The first four chambers (2 nonaerated-2 aerated) were filled with sand to encourage microbial colonization. Sorbant Granular Activated Carbon (GAC) was present in the final two chambers in order to remove any recalcitrant compounds. The SEREBAR has been in continuous operation for 2 years at different operational flow rates (ranging from 320 L/d to 4000 L/d, with corresponding residence times in each chamber of 19 days and 1.5 days, respectively). Under low flow rate conditions (320-520 L/d) the majority of contaminant removal (>93%) occurred biotically within the interceptor and the aerated chambers. Under high flow rates (1000-4000 L/d) and following the installation of a new interceptor to prevent passive aeration, the majority of contaminant removal (>80%) again occurred biotically within the aerated chambers. The sorption zone (GAC) proved to be an effective polishing step, removing any remaining contaminants to acceptable concentrations before discharge down-gradient of the SEREBAR (overall removals >95%).