955 resultados para Cones. Dopamine. Eye. Ganglion cells. Rods. vision
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.
Resumo:
New-onset impairment of ocular motility will cause incomitant strabismus, i.e., a gaze-dependent ocular misalignment. This ocular misalignment will cause retinal disparity, that is, a deviation of the spatial position of an image on the retina of both eyes, which is a trigger for a vergence eye movement that results in ocular realignment. If the vergence movement fails, the eyes remain misaligned, resulting in double vision. Adaptive processes to such incomitant vergence stimuli are poorly understood. In this study, we have investigated the physiological oculomotor response of saccadic and vergence eye movements in healthy individuals after shifting gaze from a viewing position without image disparity into a field of view with increased image disparity, thus in conditions mimicking incomitance. Repetitive saccadic eye movements into a visual field with increased stimulus disparity lead to a rapid modification of the oculomotor response: (a) Saccades showed immediate disconjugacy (p < 0.001) resulting in decreased retinal image disparity at the end of a saccade. (b) Vergence kinetics improved over time (p < 0.001). This modified oculomotor response enables a more prompt restoration of ocular alignment in new-onset incomitance.
Resumo:
PURPOSE Recent advances in optogenetics and gene therapy have led to promising new treatment strategies for blindness caused by retinal photoreceptor loss. Preclinical studies often rely on the retinal degeneration 1 (rd1 or Pde6b(rd1)) retinitis pigmentosa (RP) mouse model. The rd1 founder mutation is present in more than 100 actively used mouse lines. Since secondary genetic traits are well-known to modify the phenotypic progression of photoreceptor degeneration in animal models and human patients with RP, negligence of the genetic background in the rd1 mouse model is unwarranted. Moreover, the success of various potential therapies, including optogenetic gene therapy and prosthetic implants, depends on the progress of retinal degeneration, which might differ between rd1 mice. To examine the prospect of phenotypic expressivity in the rd1 mouse model, we compared the progress of retinal degeneration in two common rd1 lines, C3H/HeOu and FVB/N. METHODS We followed retinal degeneration over 24 weeks in FVB/N, C3H/HeOu, and congenic Pde6b(+) seeing mouse lines, using a range of experimental techniques including extracellular recordings from retinal ganglion cells, PCR quantification of cone opsin and Pde6b transcripts, in vivo flash electroretinogram (ERG), and behavioral optokinetic reflex (OKR) recordings. RESULTS We demonstrated a substantial difference in the speed of retinal degeneration and accompanying loss of visual function between the two rd1 lines. Photoreceptor degeneration and loss of vision were faster with an earlier onset in the FVB/N mice compared to C3H/HeOu mice, whereas the performance of the Pde6b(+) mice did not differ significantly in any of the tests. By postnatal week 4, the FVB/N mice expressed significantly less cone opsin and Pde6b mRNA and had neither ERG nor OKR responses. At 12 weeks of age, the retinal ganglion cells of the FVB/N mice had lost all light responses. In contrast, 4-week-old C3H/HeOu mice still had ERG and OKR responses, and we still recorded light responses from C3H/HeOu retinal ganglion cells until the age of 24 weeks. These results show that genetic background plays an important role in the rd1 mouse pathology. CONCLUSIONS Analogous to human RP, the mouse genetic background strongly influences the rd1 phenotype. Thus, different rd1 mouse lines may follow different timelines of retinal degeneration, making exact knowledge of genetic background imperative in all studies that use rd1 models.
Resumo:
Introduction: In team sports the ability to use peripheral vision is essential to track a number of players and the ball. By using eye-tracking devices it was found that players either use fixations and saccades to process information on the pitch or use smooth pursuit eye movements (SPEM) to keep track of single objects (Schütz, Braun, & Gegenfurtner, 2011). However, it is assumed that peripheral vision can be used best when the gaze is stable while it is unknown whether motion changes can be equally well detected when SPEM are used especially because contrast sensitivity is reduced during SPEM (Schütz, Delipetkose, Braun, Kerzel, & Gegenfurtner, 2007). Therefore, peripheral motion change detection will be examined by contrasting a fixation condition with a SPEM condition. Methods: 13 participants (7 male, 6 female) were presented with a visual display consisting of 15 white and 1 red square. Participants were instructed to follow the red square with their eyes and press a button as soon as a white square begins to move. White square movements occurred either when the red square was still (fixation condition) or moving in a circular manner with 6 °/s (pursuit condition). The to-be-detected white square movements varied in eccentricity (4 °, 8 °, 16 °) and speed (1 °/s, 2 °/s, 4 °/s) while movement time of white squares was constant at 500 ms. 180 events should be detected in total. A Vicon-integrated eye-tracking system and a button press (1000 Hz) was used to control for eye-movements and measure detection rates and response times. Response times (ms) and missed detections (%) were measured as dependent variables and analysed with a 2 (manipulation) x 3 (eccentricity) x 3 (speed) ANOVA with repeated measures on all factors. Results: Significant response time effects were found for manipulation, F(1,12) = 224.31, p < .01, ηp2 = .95, eccentricity, F(2,24) = 56.43; p < .01, ηp2 = .83, and the interaction between the two factors, F(2,24) = 64.43; p < .01, ηp2 = .84. Response times increased as a function of eccentricity for SPEM only and were overall higher than in the fixation condition. Results further showed missed events effects for manipulation, F(1,12) = 37.14; p < .01, ηp2 = .76, eccentricity, F(2,24) = 44.90; p < .01, ηp2 = .79, the interaction between the two factors, F(2,24) = 39.52; p < .01, ηp2 = .77 and the three-way interaction manipulation x eccentricity x speed, F(2,24) = 3.01; p = .03, ηp2 = .20. While less than 2% of events were missed on average in the fixation condition as well as at 4° and 8° eccentricity in the SPEM condition, missed events increased for SPEM at 16 ° eccentricity with significantly more missed events in the 4 °/s speed condition (1 °/s: M = 34.69, SD = 20.52; 2 °/s: M = 33.34, SD = 19.40; 4 °/s: M = 39.67, SD = 19.40). Discussion: It could be shown that using SPEM impairs the ability to detect peripheral motion changes at the far periphery and that fixations not only help to detect these motion changes but also to respond faster. Due to high temporal constraints especially in team sports like soccer or basketball, fast reaction are necessary for successful anticipation and decision making. Thus, it is advised to anchor gaze at a specific location if peripheral changes (e.g. movements of other players) that require a motor response have to be detected. In contrast, SPEM should only be used if a single object, like the ball in cricket or baseball, is necessary for a successful motor response. References: Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11, 1-30. Schütz, A. C., Delipetkose, E., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2007). Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision, 7, 1-15.
Resumo:
INTRODUCTION Optic neuritis leads to degeneration of retinal ganglion cells whose axons form the optic nerve. The standard treatment is a methylprednisolone pulse therapy. This treatment slightly shortens the time of recovery but does not prevent neurodegeneration and persistent visual impairment. In a phase II trial performed in preparation of this study, we have shown that erythropoietin protects global retinal nerve fibre layer thickness (RNFLT-G) in acute optic neuritis; however, the preparatory trial was not powered to show effects on visual function. METHODS AND ANALYSIS Treatment of Optic Neuritis with Erythropoietin (TONE) is a national, randomised, double-blind, placebo-controlled, multicentre trial with two parallel arms. The primary objective is to determine the efficacy of erythropoietin compared to placebo given add-on to methylprednisolone as assessed by measurements of RNFLT-G and low-contrast visual acuity in the affected eye 6 months after randomisation. Inclusion criteria are a first episode of optic neuritis with decreased visual acuity to ≤0.5 (decimal system) and an onset of symptoms within 10 days prior to inclusion. The most important exclusion criteria are history of optic neuritis or multiple sclerosis or any ocular disease (affected or non-affected eye), significant hyperopia, myopia or astigmatism, elevated blood pressure, thrombotic events or malignancy. After randomisation, patients either receive 33 000 international units human recombinant erythropoietin intravenously for 3 consecutive days or placebo (0.9% saline) administered intravenously. With an estimated power of 80%, the calculated sample size is 100 patients. The trial started in September 2014 with a planned recruitment period of 30 months. ETHICS AND DISSEMINATION TONE has been approved by the Central Ethics Commission in Freiburg (194/14) and the German Federal Institute for Drugs and Medical Devices (61-3910-4039831). It complies with the Declaration of Helsinki, local laws and ICH-GCP. TRIAL REGISTRATION NUMBER NCT01962571.
Resumo:
CB1, a cannabinoid receptor enriched in neuronal tissue, was found in high concentration in retinas of rhesus monkey, mouse, rat, chick, goldfish, and tiger salamander by using a subtype-specific polyclonal antibody. Immunolabeling was detected in the two synaptic layers of the retina, the inner and outer plexiform layers, of all six species examined. In the outer plexiform layer, CB1 was located in and/or on cone pedicles and rod spherules. Labeling was detected in some amacrine cells of all species and in the ganglion cells and ganglion cell axons of all species except fish. In addition, sparse labeling was found in the inner and/or outer segments of the photoreceptors of monkey, mouse, rat, and chick. Using GC/MS to detect possible endogenous cannabinoids, we found 3 nmol of 2-arachidonylglycerol per g of tissue, but no anandamide was detectable. Cannabinoid receptor agonists induced a dramatic reduction in the amplitude of voltage-gated L-type calcium channel currents in identified retinal bipolar cells. The presence and distribution of the CB1 receptor, the large amounts of 2-arachidonylglycerol found, and the effects of cannabinoids on calcium channel activity in bipolar cells suggest a substantive role for an endogenous cannabinoid signaling system in retinal physiology, and perhaps vision in general.
Resumo:
During retinogenesis, the Xenopus basic helix–loop–helix transcription factor Xath5 has been shown to promote a ganglion cell fate. In the developing mouse and chicken retinas, gene targeting and overexpression studies have demonstrated critical roles for the Brn3 POU domain transcription factor genes in the promotion of ganglion cell differentiation. However, the genetic relationship between Ath5 and Brn3 genes is unknown. To understand the genetic regulatory network(s) that controls retinal ganglion cell development, we analyzed the relationship between Ath5 and Brn3 genes by using a gain-of-function approach in the chicken embryo. We found that during retinogenesis, the chicken Ath5 gene (Cath5) is expressed in retinal progenitors and in differentiating ganglion cells but is absent in terminally differentiated ganglion cells. Forced expression of both Cath5 and the mouse Ath5 gene (Math5) in retinal progenitors activates the expression of cBrn3c following central-to-peripheral and temporal-to-nasal gradients. As a result, similar to the Xath5 protein, both Cath5 and Math5 proteins have the ability to promote the development of ganglion cells. Moreover, we found that forced expression of all three Brn3 genes also can stimulate the expression of cBrn3c. We further found that Ath5 and Brn3 proteins are capable of transactivating a Brn3b promoter. Thus, these data suggest that the expression of cBrn3c in the chicken and Brn3b in the mouse is initially activated by Ath5 factors in newly generated ganglion cells and later maintained by a feedback loop of Brn3 factors in the differentiated ganglion cells.
Resumo:
Lipid rafts are microdomains present within membranes of most cell types. These membrane microdomains, which are enriched in cholesterol and glycosphingolipids, have been implicated in the regulation of certain signal transduction and membrane traffic pathways. To investigate the possibility that lipid rafts organize exocytotic pathways in neuroendocrine cells, we examined the association of proteins of the exocytotic machinery with rafts purified from PC12 cells. The target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (tSNARE) proteins syntaxin 1A and synaptosomal-associated protein of 25 kDa (SNAP-25) were both found to be highly enriched in lipid rafts (≈25-fold). The vesicle SNARE vesicle-associated membrane protein (VAMP)2 was also present in raft fractions, but the extent of this recovery was variable. However, further analysis revealed that the majority of VAMP2 was associated with a distinct class of raft with different detergent solubility characteristics to the rafts containing syntaxin 1A and SNAP-25. Interestingly, no other studied secretory proteins were significantly associated with lipid rafts, including SNARE effector proteins such as nSec1. Chemical crosslinking experiments showed that syntaxin1A/SNAP-25 heterodimers were equally present in raft and nonraft fractions, whereas syntaxin1A/nSec1 complexes were detected only in nonraft fractions. SDS-resistance assays revealed that raft-associated syntaxin1A/SNAP-25 heterodimers were able to interact with VAMP2. Finally, reduction of cellular cholesterol levels decreased the extent of regulated exocytosis of dopamine from PC12 cells. The results described suggest that the interaction of SNARE proteins with lipid rafts is important for exocytosis and may allow structural and spatial organization of the secretory machinery.
Resumo:
Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also Peen observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations. (C) 2004 Wiley-Liss, Inc.
Resumo:
The potential for trichromacy in mammals, thought to be unique to primates, was recently discovered in two Australian marsupials. Whether the presence of three cone types, sensitive to short- (SWS), medium-(MWS) and long-(LWS) wavelengths, occurs across all marsupials remains unknown. Here, we have investigated the presence, distribution and spectral sensitivity of cone types in two further species, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Immunohistochemistry revealed that SWS cones in the quokka are concentrated in dorso-temporal retina, while in the quenda, two peaks were identified in naso-ventral and dorso-temporal retina. In both species, MWS/LWS cone spatial distributions matched those of retinal ganglion cells. Microspectrophotometry (MSP) confirmed that MWS and LWS cones are spectrally distinct, with mean wavelengths of maximum absorbance at 502 and 538 nm in the quokka, and at 509 and 551 nm, in the quenda. Although small SWS cone outer segments precluded MSP measurements, molecular analysis identified substitutions at key sites, accounting for a spectral shift from ultraviolet in the quenda to violet in the quokka. The presence of three cone types, along with previous findings in the fat-tailed dunnart and honey possum, suggests that three spectrally distinct cone types are a feature spanning the marsupials.
Resumo:
The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.
Resumo:
We thank Darrin Sheppard and other staff at the University of Aberdeen Medical Research Facility for specialist technical assistance. We thank Patsy D. Goast for overnight microscope monitoring. This work was performed under the Biotechnology and Bioscience Research Council Grant number BB/E015840/1 to JMC.