972 resultados para Condutividade iônica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the natural and anthropogenic influences on the quality of groundwater from public supply wells in the urban area of Marília, São Paulo State. Sixteen sampling points were established in the Adamantina Aquifer, Bauru Aquifer System, analyzing the following parameters: electrical conductivity, temperature, pH, total suspended solids, HCO3 - , PO4 3-, SO4 2-, Cl- , F- , N-NO3 - , Ca2+, Na+ , K+ , Mg2+, Si4+, Fe3+ and Al3+. The results indicated that the groundwater in the urban area of Marília has a slightly acid pH and low conductivity, with the ionic composition presenting a low cation and anion concentration and is classified as soft water and calciumbicarbonated water. Natural sources of elements/compounds can be attributed to the dissolution of carbonates during the water/rock interaction, controlling pH, alkalinity and electrical conductivity, and hydrolysis of other mineral constituents of sedimentary rocks from Adamantina Formation, with the exception of quartz. High concentrations of N-NO3 - found in some public supply wells in urban Marilia were due to sewage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work introduces the results from the performing of impedance spectroscopy on the transition metals oxide Ca1.2La0.8FeIrO6. It was sought to understand the behavior of one sample from its impedance spectra for different AC voltages and temperature values and if an applied external magnetic field at room temperature would cause some change on it. The results revealed that the Ca1.2La0.8FeIrO6 at high temperatures shows conductive and inductive behavior and that the resistance increases with frequency, phenomenon known as Kelvin effect. At 150 K, the spectrum real part no longer consists with the theoretical prediction of Kelvin effect, starting to be influenced by the utilized voltages, condition that inexists on theory. At low temperatures (10, 20, 30 K) it was observed resistive and capacitive behavior, being possible on these conditions, associate to the sample a paralel RC circuit in series with a contact resistance with a fitting from the ZSim software. This fitting allowed the obtaining of capacitance, DC resistance and contact resistance values. The application of a 700G magnetic field at room temperature didn't cause changes on the spectra

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we aimed to evaluate the effect of five drying systems on the quality of crambe seed and the influence of the pericarp in its electrical conductivity. The experimental design adopted was randomized blocks with four replications. The following drying methods were applied: drying in the field, on the patio, under shade, with heated air, and non-heated air. To evaluate the electrical conductivity and the fat acidity, the seeds, from the cultivar FMS Brilhante, were analyzed with and without pericarp. . An analysis of variance was performed and the means were compared by Tukey test (p≤0,05). We also performed the Pearson linear correlation between electrical conductivity and fat acidity in order to evaluate the pericarp influence. The 4 drying system using shades cause less damage to the seeds; and the presence of pericarp decreased the sensitivity of the electrical conductivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the amount of nutrients accumulated in the plant provides important information that can assist in the fertilization of crops program. To study the salt effect caused by high amounts of fertilizers applied by fertigation, an experiment was conducted in a greenhouse at the FCA/UNESP, Botucatu, SP. The experiment lasted 90 days (01/11/11 to 29/01/12) constituting five levels of electrical conductivity (1.0, 3.0, 6.0, 9.0, and 12.0 dS m-1), fertigation two management (M1: traditional management, M2: management by controlling the ionic concentration of the soil solution) and two varieties of beets (Early Wonder and Itapuã) blocks with 4 repeats forming a 5x2x2 factorial. From the dry weight of shoots and roots was determined the levels of micronutrients (B, Cu, Fe, Mn, Zn mg kg-1), and by multiplying the dry matter accumulation was determined in these plant . The accumulation of micronutrients in different parts of the plant followed the order: Fe> Mn> Zn> B> Cu for the different management fertigation studied. The Cu, Fe, Mn element present responses to increased soil salinity leading to greater absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experiments were conducted in order to study the effects of seed number, temperature and time of soaking sesame seeds on the results of the electrical conductivity test for physiological quality of seeds. In the experiment I evaluated the electrical conductivity varying the number of seeds (25, 50 and 100) and temperature (20, 25 and 30° C) in experiment II is different soaking periods (2, 4, 6, 8, 12, 16, 20 and 24 h). The tests were performed with three cultivars (cv. Trebol, cv. Cnpa G4 e cv. Comum). The treatments in factorial 3x3x3 and 3x8 in experiments I and II, respectively. The experimental design was completely randomized, with four replications. Means were compared by Tukey test at 5% probability. The characterization of cultivars held through the germination and vigor tests (physical, physiological and biochemical), which rated the Trebol cultivar seeds with better physiological then the Cnpa G4 and Comum. The electrical conductivity test was conducted with four sub-samples of 25 pure seeds soaked in 75 mL of deionized water at 25° C, to separate the lots from 2 hours of soaking, being feasible to evaluate the quality sesame seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity has been proposed as a rapid test to evaluate seed vigor; however, few researches have emphasized methodologies to its use in seeds of medicinal plants, such as chamomile. The objective of the research was to evaluate the electrical conductivity of chamomile seeds affected by different imbibition times and sample size. The evaluations consisted of moisture content, germination and vigor (first count of germination) to seed initial characterization. Then, it was evaluated the electrical conductivity, affected by imbibition time (6, 12, 24 e 48 hours) and seed amount per sample (25, 50, 75, 100). The completely randomized design was used with four replications, arranged as a 4 x 4 factorial. Means were compared by the Tukey test at 5% of probability. It was concluded that the electrical conductivity of chamomile seeds is affected by the number of seeds per sample and imbibition time isolately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Las plantas son organismos sésiles que han desarrollado la capacidad para detectar variaciones sutiles en su ambiente y producir respuestas adaptativas mediante rutas de señalización. Los estímulos causados por el estrés biótico y abiótico son numerosos y dependiendo del tiempo de exposición y su intensidad, pueden reducir la tasa de crecimiento de las plantas y la producción. Los cambios en la concentración del calcio citosólico libre constituyen una de las primeras reacciones intracelulares a las situaciones de estrés abiótico. En esta situación, el calcio actúa como segundo mensajero y las variaciones en su concentración son descodificadas por proteínas de unión a calcio. Las más conocidas son las manos-EF y los dominios C2. Los dominios C2 han sido descritos como dominios de unión a lípidos dependientes de calcio. Estos dominios se consideran proteínas periféricas solubles en agua que se asocian de manera reversible a los lípidos de la membrana mediante una o dos regiones funcionales: el sitio de unión a calcio y el sitio polibásico. A pesar de que se conoce la estructura molecular de algunos dominios C2, se desconocen aspectos relacionados como las reglas que dirigen su forma de interaccionar con los diferentes fosfolípidos y proteínas, la posición que ocupan en la bicapa lipídica y su papel en la transmisión de señales. En esta tesis se ha estudiado una proteína de Arabidopsis thaliana (At3g17980) representativa de una nueva familia de proteínas con dominios C2, que consiste únicamente de un dominio C2. Esta proteína, llamada AtC2.1, ha sido clonada en el vector pETM11, expresada en E. coli y purificada a homogeneidad en dos pasos cromatográficos. Se obtuvieron cristales de AtC2.1 de buena calidad mediante técnicas de difusión de vapor. La proteína fue co-cristalizada con calcio, fosfocolina (POC) y el fosfolípido 1,2-dihexanoil-sn-glicero-3-fosfo-L-serina (PSF). Se recogieron ocho conjuntos de datos de difracción de rayos X empleando radiación sincrotrón. Los cristales difractaron hasta 1.6 Å de resolución. Siete de ellos pertenecían al grupo ortorrómbico P212121, con las dimensiones de la celdilla unidad a = 35.3, b = 88.9, c = 110.6 Å, y un cristal pertenecía al grupo espacial monoclínico C2, con a = 124.84, b = 35.27, c = 92.32 Å y = 121.70º. La estructura se resolvió mediante la técnica MR-SAD utilizando el cinc como dispersor anómalo. La estructura cristalina mostró que la molécula forma un dímero en el que cada protómero se pliega como un dominio C2 típico, con la topología tipo II y presenta una inserción de 43 aminoácidos que la diferencia de los dominios C2 conocidos. El mapa de densidad electrónica mostró dos átomos de calcio por protómero. Se resolvieron las estructuras de AtC2.1 en complejo con POC o PSF. En ambos complejos, el análisis cristalográfico detectó máximos de densidad electrónica en la región correspondiente al sitio polibásico formado por las hebras 2, 3 5 y el lazo 3. Éstos se interpretaron correctamente como dos moléculas de POC y un átomo de cinc, en un complejo, y como la cabeza polar del PSF en el otro. AtC2.1 define un sitio de interacción con lípidos dependiente de cinc. En conclusión, en este trabajo se presenta la estructura tridimensional de AtC2.1, miembro representativo de una familia de proteínas de Arabidopsis thaliana, identificadas como proteínas que interaccionan con los receptores de ABA. Estas proteínas están constituidas únicamente por un dominio C2. El análisis conjunto de los datos biofísicos y cristalográficos muestra que AtC2.1 es un sensor de calcio que une lípidos usando dos sitios funcionales. Estos datos sugieren un mecanismo de inserción en membrana dependiente de calcio que trae consigo la disociación de la estructura dimérica y, por consiguiente, un cambio en las propiedades de superficie de la molécula. Este mecanismo proporciona las bases del reconocimiento y transporte de los receptores de ABA y/o otras moléculas a la membrana celular. Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive biotic and abiotic stress signals and to transduce them by signaling pathways in order to trigger adaptative responses. Stress factors are numerous and, depending on their exposition time and their concentration, can reduce plant growth rate, limiting the productivity of crop plants. Changes in the cytosolic free calcium concentration are observed as one of the earliest intracellular reactions to abiotic stress signals. Calcium plays a key role as a second messenger, and calcium concentration signatures, called calcium signals, are decodified by calcium binding proteins. The main calcium binding structures are the EF-hand motif and the C2 domains. C2 domain is a calcium dependent lipid-binding domain of approximately 130 amino acids. C2 domain displays two functional regions: the Ca-binding region and the polybasic cluster. Both of them can interact with the membrane phospholipids. Despite the number of C2 domain 3D structures currently available, questions about how they interact with the different target phospholipids, their precise spatial position in the lipid bilayer, interactions with other proteins and their role in transmitting signals downstream, have not yet been explored. In this work we have studied an uncharacterized protein from Arabidopsis thaliana (At3g17980) consisting of only a single C2 domain, as member of a new protein C2-domain family. This protein called AtC2.1 was cloned into the pETM11 vector and expressed in E. coli, allowing the purification to homogeneity in two chromatographic steps. Good quality diffracting crystals were obtained using vapor-diffusion techniques. Crystals were co-crystalized with calcium; phosphocholine (POC) and/or the phospholipid 1,2-dihexanoyl-sn-glycero-3-phospho-L-serine (PSF). Eight data set were collected with synchrotron radiation. Crystals diffracted up to 1.6 Å resolution and seven of them belong to the orthorhombic space group P212121, with unit-cell parameters a = 35.3, b = 88.9, c = 110.6 Å. Another crystal was monoclinic, space group C2, with a = 124.84, b = 35.27, c = 92.32 Å and = 121.70º. The structural model was solved by MR-SAD using Zn2+ as anomalous scatterer. The crystal structure shows that the molecule is a dimer. Each monomer was folded as a canonical C2 domain with the topology II with a 43 residues insertion. The electron density map reveals two calcium ions per molecule. Structures of AtC2.1, complexed with POC and PSF, have been solved. Well-defined extra electron densities were found, in both complexes, within the concave surface formed by strands 2, 3, 5 and loop 3 of AtC2.1. These densities were clearly explained by the presence of the two POC molecules, one zinc atom and head groups of PSF, occupying the cavity of the polybasic site. AtC2.1 defines a new metal dependent lipid-binding site into the polybasic site. In conclusion, in this thesis it is presented the molecular structure of AtC2.1, a representative member of a family of Arabidopsis thaliana C2 domain proteins, of unknown function, but identified as a molecular interacting unit of the ABA receptors. The joint analyses of the biophysical and crystallographic data show that AtC2.1 is a calcium sensor that binds lipids in two sites and suggest a model of calcium-dependent membrane insertion mechanism that will involve either dimer dissociation or a strong rearrangement of the dimeric structure. This mechanism may be the basis for the recognition and delivery of ABA receptors or other protein molecules to cell membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A condutividade hidráulica (K) é um dos parâmetros controladores da magnitude da velocidade da água subterrânea, e consequentemente, é um dos mais importantes parâmetros que afetam o fluxo subterrâneo e o transporte de solutos, sendo de suma importância o conhecimento da distribuição de K. Esse trabalho visa estimar valores de condutividade hidráulica em duas áreas distintas, uma no Sistema Aquífero Guarani (SAG) e outra no Sistema Aquífero Bauru (SAB) por meio de três técnicas geoestatísticas: krigagem ordinária, cokrigagem e simulação condicional por bandas rotativas. Para aumentar a base de dados de valores de K, há um tratamento estatístico dos dados conhecidos. O método de interpolação matemática (krigagem ordinária) e o estocástico (simulação condicional por bandas rotativas) são aplicados para estimar os valores de K diretamente, enquanto que os métodos de krigagem ordinária combinada com regressão linear e cokrigagem permitem incorporar valores de capacidade específica (Q/s) como variável secundária. Adicionalmente, a cada método geoestatístico foi aplicada a técnica de desagrupamento por célula para comparar a sua capacidade de melhorar a performance dos métodos, o que pode ser avaliado por meio da validação cruzada. Os resultados dessas abordagens geoestatísticas indicam que os métodos de simulação condicional por bandas rotativas com a técnica de desagrupamento e de krigagem ordinária combinada com regressão linear sem a técnica de desagrupamento são os mais adequados para as áreas do SAG (rho=0.55) e do SAB (rho=0.44), respectivamente. O tratamento estatístico e a técnica de desagrupamento usados nesse trabalho revelaram-se úteis ferramentas auxiliares para os métodos geoestatísticos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The textile sector is one of the main contributors to the generation of industrial wastewaters due to the use of large volumes of water, which has a high organic load content. In these, it is observed to the presence of dyes, surfactants, starch, alcohols, acetic acid and other constituents, from the various processing steps of the textiles. Hence, the treatment of textile wastewater becomes fundamental before releasing it into water bodies, where they can cause disastrous physical-chemical changes for the environment. Surfactants are substances widely used in separation processes and their use for treating textile wastewaters was evaluated in this research by applying the cloud point extraction and the ionic flocculation. In the cloud point extraction was used as surfactant nonylphenol with 9.5 ethoxylation degree to remove reactive dye. The process evaluation was performed in terms of temperature, surfactant and dye concentrations. The dye removal reached 91%. The ionic flocculation occurs due to the presence of calcium, which reacts with anionic surfactant to form insoluble surfactants capable of attracting the organic matter by adsorption. In this work the ionic flocculation using base soap was applied to the treatment of synthetic wastewater containing dyes belonging to three classes: direct, reactive, and disperse. It was evaluated by the influence of the following parameters: surfactant and electrolyte concentrations, stirring speed, equilibrium time, temperature, and pH. The flocculation of the surfactant was carried out in two ways: forming the floc in the effluent itself and forming the floc before mixing it to the effluent. Removal of reactive and direct dye, when the floc is formed into textile effluent was 97% and 87%, respectively. In the case where the floc is formed prior to adding it to the effluent, the removal to direct and disperse dye reached 92% and 87%, respectively. These results show the efficience of the evaluated processes for dye removal from textile wastewaters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical approach to estimate rock thermal conductivities is to use rock models based just on the observed or expected rock mineral content. In this study, we evaluate the performances of the Krischer and Esdorn (KE), Hashin and Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric mean (GM) models in reproducing the measures of thermal conductivity of crystalline rocks.We used 1,105 samples of igneous and metamorphic rocks collected in outcroppings of the Borborema Province, Northeastern Brazil. Both thermal conductivity and petrographic modal analysis (percent volumes of quartz, K-feldspar, plagioclase, and sum of mafic minerals) were done. We divided the rocks into two groups: (a) igneous and ortho-derived (or meta-igneous) rocks and (b) metasedimentary rocks. The group of igneous and ortho-derived rocks (939 samples) covers most the lithologies de_ned in the Streckeisen diagram, with higher concentrations in the fields of granite, granodiorite, and tonalite. In the group of metasedimentary rocks (166 samples), it were sampled representative lithologies, usually of low to medium metamorphic grade. We treat the problem of reproducing the measured values of rock conductivity as an inverse problem where, besides the conductivity measurements, the volume fractions of the constituent minerals are known and the effective conductivities of the constituent minerals and model parameters are unknown. The key idea was to identify the model (and its associated estimates of effective mineral conductivities and parameters) that better reproduces the measures of rock conductivity. We evaluate the model performances by the quantity  that is equal to the percentage of number of rock samples which estimated conductivities honor the measured conductivities within the tolerance of 15%. In general, for all models, the performances were quite inferior for the metasedimentary rocks (34% <  < 65%) as compared with the igneous and ortho-derived rocks (51% <  < 70%). For igneous and ortho-derived rocks, all model performances were very similar ( = 70%), except the GM-model that presented a poor performance (51% <  < 65%); the KE and HS-models ( = 70%) were slightly superior than the CM and MW-models ( = 67%). The quartz content is the dominant factor in explaining the rock conductivity for igneous and ortho-derived rocks; in particular, using the MW-model the solution is in practice vi UFRN/CCET– Dissertação de mestrado the series association of the quartz content. On the other hand, for metasedimentary rocks, model performances were different and the performance of the KEmodel ( = 65%) was quite superior than the HS ( = 53%), CM (34% <  < 42%), MW ( = 40%), and GM (35% <  < 42%). The estimated effective mineral conductivities are stable for perturbations both in the rock conductivity measures and in the quartz volume fraction. The fact that the metasedimentary rocks are richer in platy-minerals explains partially the poor model performances, because both the high thermal anisotropy of biotite (one of the most common platy-mineral) and the difficulty in obtaining polished surfaces for measurement coupling when platyminerals are present. Independently of the rock type, both very low and very high values of rock conductivities are hardly explained by rock models based just on rock mineral content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture is an essential activity to the human development, the tendency is that their need to increase according to the increase in world population. It is very important to take the maximum performance that is possible of each land without degrading it, a frequently monitoring is essential for the best performance. The purpose of this work is, nondestructively, to monitor the surface electrical conductivity of the soil in a demarcated area, as on a plantation, using low frequency radio waves. The conductivity is directly linked to the amount of water in the area and nutrients, therefore a periodic or even permanent monitoring increases significantly the efficient of the use of the soil. They will be used long-wave radio transmission or medium whose main characteristic to spread over the surface of the earth. It is possible to choose an AM radio with location, frequency and power of the transmission known or generate the signal. The studied method computes the conductivity of the ground in a straight line between two measured points, so it can be used in smaller or larger size fields. Measurements were carried out using an electromagnetic field strength analyzer. The data obtained in the measurements are processed by a numerical calculation program, in our case Matlab. It is concluded that the recommendations of the ITU (International Telecommunication Union) on the conductivity of soil in Brazil is far from reality, on some routes the recommendations indicate the use of the electrical conductivity of the soil 1 mS/m, while the measurements was found 19 mS/m. With the method described a precision farmer, once initial research for about a year, can monitor the humidity and salinity of the land, with the ability to predict the area and the most suitable time for irrigation and fertilization, making management more efficient and less expensive, while optimizing water use, natural resource increasingly precious.