894 resultados para Computer operating systems
Resumo:
The present study describes a pragmatic approach to the implementation of production planning and scheduling techniques in foundries of all types and looks at the use of `state-of-the-art' management control and information systems. Following a review of systems for the classification of manufacturing companies, a definitive statement is made which highlights the important differences between foundries (i.e. `component makers') and other manufacturing companies (i.e. `component buyers'). An investigation of the manual procedures which are used to plan and control the manufacture of components reveals the inherent problems facing foundry production management staff, which suggests the unsuitability of many manufacturing techniques which have been applied to general engineering companies. From the literature it was discovered that computer-assisted systems are required which are primarily `information-based' rather than `decision based', whilst the availability of low-cost computers and `packaged-software' has enabled foundries to `get their feet wet' without the financial penalties which characterized many of the early attempts at computer-assistance (i.e. pre-1980). Moreover, no evidence of a single methodology for foundry scheduling emerged from the review. A philosophy for the development of a CAPM system is presented, which details the essential information requirements and puts forward proposals for the subsequent interactions between types of information and the sub-system of CAPM which they support. The work developed was oriented specifically at the functions of production planning and scheduling and introduces the concept of `manual interaction' for effective scheduling. The techniques developed were designed to use the information which is readily available in foundries and were found to be practically successful following the implementation of the techniques into a wide variety of foundries. The limitations of the techniques developed are subsequently discussed within the wider issues which form a CAPM system, prior to a presentation of the conclusions which can be drawn from the study.
Resumo:
Diagnosing faults in wastewater treatment, like diagnosis of most problems, requires bi-directional plausible reasoning. This means that both predictive (from causes to symptoms) and diagnostic (from symptoms to causes) inferences have to be made, depending on the evidence available, in reasoning for the final diagnosis. The use of computer technology for the purpose of diagnosing faults in the wastewater process has been explored, and a rule-based expert system was initiated. It was found that such an approach has serious limitations in its ability to reason bi-directionally, which makes it unsuitable for diagnosing tasks under the conditions of uncertainty. The probabilistic approach known as Bayesian Belief Networks (BBNS) was then critically reviewed, and was found to be well-suited for diagnosis under uncertainty. The theory and application of BBNs are outlined. A full-scale BBN for the diagnosis of faults in a wastewater treatment plant based on the activated sludge system has been developed in this research. Results from the BBN show good agreement with the predictions of wastewater experts. It can be concluded that the BBNs are far superior to rule-based systems based on certainty factors in their ability to diagnose faults and predict systems in complex operating systems having inherently uncertain behaviour.
Resumo:
Modern compute systems continue to evolve towards increasingly complex, heterogeneous and distributed architectures. At the same time, functionality and performance are no longer the only aspects when developing applications for such systems, and additional concerns such as flexibility, power efficiency, resource usage, reliability and cost are becoming increasingly important. This does not only raise the question of how to efficiently develop applications for such systems, but also how to cope with dynamic changes in the application behaviour or the system environment. The EPiCS Project aims to address these aspects through exploring self-awareness and self-expression. Self-awareness allows systems and applications to gather and maintain information about their current state and environment, and reason about their behaviour. Self-expression enables systems to adapt their behaviour autonomously to changing conditions. Innovations in EPiCS are based on systematic integration of research in concepts and foundations, customisable hardware/software platforms and operating systems, and self-aware networking and middleware infrastructure. The developed technologies are validated in three application domains: computational finance, distributed smart cameras and interactive mobile media systems. © 2012 IEEE.
Resumo:
Smart cameras allow pre-processing of video data on the camera instead of sending it to a remote server for further analysis. Having a network of smart cameras allows various vision tasks to be processed in a distributed fashion. While cameras may have different tasks, we concentrate on distributed tracking in smart camera networks. This application introduces various highly interesting problems. Firstly, how can conflicting goals be satisfied such as cameras in the network try to track objects while also trying to keep communication overhead low? Secondly, how can cameras in the network self adapt in response to the behavior of objects and changes in scenarios, to ensure continued efficient performance? Thirdly, how can cameras organise themselves to improve the overall network's performance and efficiency? This paper presents a simulation environment, called CamSim, allowing distributed self-adaptation and self-organisation algorithms to be tested, without setting up a physical smart camera network. The simulation tool is written in Java and hence allows high portability between different operating systems. Relaxing various problems of computer vision and network communication enables a focus on implementing and testing new self-adaptation and self-organisation algorithms for cameras to use.
Resumo:
The methods and software for integration of databases (DBs) on inorganic material and substance properties have been developed. The information systems integration is based on known approaches combination: EII (Enterprise Information Integration) and EAI (Enterprise Application Integration). The metabase - special database that stores data on integrated DBs contents is an integrated system kernel. Proposed methods have been applied for DBs integrated system creation in the field of inorganic chemistry and materials science. Important developed integrated system feature is ability to include DBs that have been created by means of different DBMS using essentially various computer platforms: Sun (DB "Diagram") and Intel (other DBs) and diverse operating systems: Sun Solaris (DB "Diagram") and Microsoft Windows Server (other DBs).
Resumo:
The paper develops a set of ideas and techniques supporting analogical reasoning throughout the life-cycle of terrorist acts. Implementation of these ideas and techniques can enhance the intellectual level of computer-based systems for a wide range of personnel dealing with various aspects of the problem of terrorism and its effects. The method combines techniques of structure-sensitive distributed representations in the framework of Associative-Projective Neural Networks, and knowledge obtained through the progress in analogical reasoning, in particular the Structure Mapping Theory. The impact of these analogical reasoning tools on the efforts to minimize the effects of terrorist acts on civilian population is expected by facilitating knowledge acquisition and formation of terrorism-related knowledge bases, as well as supporting the processes of analysis, decision making, and reasoning with those knowledge bases for users at various levels of expertise before, during, and after terrorist acts.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown viruses quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives. ^
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown virus quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^
Resumo:
Unequaled improvements in processor and I/O speeds make many applications such as databases and operating systems to be increasingly I/O bound. Many schemes such as disk caching and disk mirroring have been proposed to address the problem. In this thesis we focus only on disk mirroring. In disk mirroring, a logical disk image is maintained on two physical disks allowing a single disk failure to be transparent to application programs. Although disk mirroring improves data availability and reliability, it has two major drawbacks. First, writes are expensive because both disks must be updated. Second, load balancing during failure mode operation is poor because all requests are serviced by the surviving disk. Distorted mirrors was proposed to address the write problem and interleaved declustering to address the load balancing problem. In this thesis we perform a comparative study of these two schemes under various operating modes. In addition we also study traditional mirroring to provide a common basis for comparison.
Resumo:
LAPMv2 is a research software solution specifically developed to allow marine scientists to produce geo-referenced visual maps of the seafloor, known as mosaics, from a set of underwater images and navigation data. LAPMv2 has a graphical user interface that guides the user through the different steps of the mosaicking workflow. LAPMv2 runs on 64-bit Windows, MacOS X and Linux operating systems. There are two versions for each operating system: (1) the WEB-installers (lightweight but require an internet connection during the installation) and (2) the MCR installers (large files but can be installed on computer without internet-connection). The user manual explains how to install and start the program on the different operating systems. Go to http://www.lapm.eu.com for further information about the latest versions of LAPMv2.
Resumo:
Abstract: It is estimated that 1 in 5 will, at some point in their lives, experience a long-term illness or disability that will impact their day to day lives. Access to digital information and technologies can be life changing and a necessity to fully participate in education, work and society. Specialist assistive technologies, such as screen readers, have been available for many years and are now built-into operating systems and devices. In addition, web accessibility standards have been compiled and published since the advent of the World Wide Web over two decades ago. However, internet use by people with disabilities continues to lag significantly behind those with no disability and use of assistive technologies remains lower than should be the case with tools often abandoned. In this seminar we will talk about our work to identify digital accessibility challenges; the barriers experienced by those with disabilities and how computer scientists can play a part in removing obstacles to access and ease of use. We will discuss some of our projects focussing on: • Development of assistive technologies for niche groups of users, • improving accessibility standards to cover a wider range of disabilities, • creating accessibility training resources for developers and stakeholders • embedding accessibility practice within development projects.