983 resultados para Computer architecture -- TFG
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
A web service is a collection of industry standards to enable reusability of services and interoperability of heterogeneous applications. The UMLS Knowledge Source (UMLSKS) Server provides remote access to the UMLSKS and related resources. We propose a Web Services Architecture that encapsulates UMLSKS-API and makes it available in distributed and heterogeneous environments. This is the first step towards intelligent and automatic UMLS services discovery and invocation by computer systems in distributed environments such as web.
Resumo:
This paper addresses the novel notion of offering a radio access network as a service. Its components may be instantiated on general purpose platforms with pooled resources (both radio and hardware ones) dimensioned on-demand, elastically and following the pay-per-use principle. A novel architecture is proposed that supports this concept. The architecture's success is in its modularity, well-defined functional elements and clean separation between operational and control functions. By moving much processing traditionally located in hardware for computation in the cloud, it allows the optimisation of hardware utilization and reduction of deployment and operation costs. It enables operators to upgrade their network as well as quickly deploy and adapt resources to demand. Also, new players may easily enter the market, permitting a virtual network operator to provide connectivity to its users.
Resumo:
Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to increase LTE's performance. In this way a shared distributed virtualized LTE mobile network is built that can optimize the utilization of virtualized computing, storage and network resources and minimize communication delays. Two important features that can be used in such a virtualized system to improve its performance are the user mobility and bandwidth prediction. This paper introduces the architecture and challenges that are associated with user mobility and bandwidth prediction approaches in virtualized LTE systems.
Resumo:
Dicto is a declarative language for specifying architectural rules using a single uniform notation. Once defined, rules can automatically be validated using adapted off-the-shelf tools.
Resumo:
Architectural decisions can be interpreted as structural and behavioral constraints that must be enforced in order to guarantee overarching qualities in a system. Enforcing those constraints in a fully automated way is often challenging and not well supported by current tools. Current approaches for checking architecture conformance either lack in usability or offer poor options for adaptation. To overcome this problem we analyze the current state of practice and propose an approach based on an extensible, declarative and empirically-grounded specification language. This solution aims at reducing the overall cost of setting up and maintaining an architectural conformance monitoring environment by decoupling the conceptual representation of a user-defined rule from its technical specification prescribed by the underlying analysis tools. By using a declarative language, we are able to write tool-agnostic rules that are simple enough to be understood by untrained stakeholders and, at the same time, can be can be automatically processed by a conformance checking validator. Besides addressing the issue of cost, we also investigate opportunities for increasing the value of conformance checking results by assisting the user towards the full alignment of the implementation with respect to its architecture. In particular, we show the benefits of providing actionable results by introducing a technique which automatically selects the optimal repairing solutions by means of simulation and profit-based quantification. We perform various case studies to show how our approach can be successfully adopted to support truly diverse industrial projects. We also investigate the dynamics involved in choosing and adopting a new automated conformance checking solution within an industrial context. Our approach reduces the cost of conformance checking by avoiding the need for an explicit management of the involved validation tools. The user can define rules using a convenient high-level DSL which automatically adapts to emerging analysis requirements. Increased usability and modular customization ensure lower costs and a shorter feedback loop.
Resumo:
Any new hospital communication architecture has to support existing services, but at the same time new added features should not affect normal tasks. This article deals with issues regarding old and new systems’ interoperability, as well as the effect the human factor has in a deployed architecture. It also presents valuable information, which is a product of a real scenario. Tracking services are also tested in order to monitor and administer several medical resources.
Resumo:
Abstract is not available
Resumo:
From the educational point of view, the most widespread method in developing countries is on-site education. Technical and economic resources cannot support conventional distance learning infrastructures and it is even worse for courses in universities. They usually suffer a lack of qualified faculty staff, especially in technical degrees. The literature suggest that e-learning is a suitable solution for this problem, but its methods are developed attending to educational necessities of the First World and cannot be applied directly to other contexts. The proposed methodology is a variant of traditional e-learning adapted to the needs of developing countries. E-learning for Cooperation and Development (c&d-learning) is oriented to be used for educational institutions without adequate technical or human resources. In this paper we describe the c&d-learning implementation architecture based on three main phases: hardware, communication and software; e.g. computer and technical equipping, internet accessing and e-learning platform adaptation. Proper adaptation of educational contents to c&d-learning is discussed and a real case of application in which the authors are involved is described: the Ngozi University at Burundi.
Resumo:
In this work, we propose the Networks of Evolutionary Processors (NEP) [2] as a computational model to solve problems related with biological phenomena. In our first approximation, we simulate biological processes related with cellular signaling and their implications in the metabolism, by using an architecture based on NEP (NEP architecture) and their specializations: Networks of Polarized Evolutionary Processors (NPEP) [1] and NEP Transducers (NEPT) [3]. In particular, we use this architecture to simulate the interplay between cellular processes related with the metabolism as the Krebs cycle and the malate-aspartate shuttle pathway (MAS) both being altered by signaling by calcium.
Resumo:
Uno de los mayores retos para la comunidad científica es conseguir que las máquinas posean en un futuro la capacidad del sistema visual y cognitivo humanos, de forma que, por ejemplo, en entornos de video vigilancia, puedan llegar a proporcionar de manera automática una descripción fiable de lo que está ocurriendo en la escena. En la presente tesis, mediante la propuesta de un marco de trabajo de referencia, se discuten y plantean los pasos necesarios para el desarrollo de sistemas más inteligentes capaces de extraer y analizar, a diferentes niveles de abstracción y mediante distintos módulos de procesamiento independientes, la información necesaria para comprender qué está sucediendo en un conjunto amplio de escenarios de distinta naturaleza. Se parte de un análisis de requisitos y se identifican los retos para este tipo de sistemas en la actualidad, lo que constituye en sí mismo los objetivos de esta tesis, contribuyendo así a un modelo de datos basado en el conocimiento que permitirá analizar distintas situaciones en las que personas y vehículos son los actores principales, dejando no obstante la puerta abierta a la adaptación a otros dominios. Así mismo, se estudian los distintos procesos que se pueden lanzar a nivel interno así como la necesidad de integrar mecanismos de realimentación a distintos niveles que permitan al sistema adaptarse mejor a cambios en el entorno. Como resultado, se propone un marco de referencia jerárquico que integra las capacidades de percepción, interpretación y aprendizaje para superar los retos identificados en este ámbito; y así poder desarrollar sistemas de vigilancia más robustos, flexibles e inteligentes, capaces de operar en una variedad de entornos. Resultados experimentales ejecutados sobre distintas muestras de datos (secuencias de vídeo principalmente) demuestran la efectividad del marco de trabajo propuesto respecto a otros propuestos en el pasado. Un primer caso de estudio, permite demostrar la creación de un sistema de monitorización de entornos de parking en exteriores para la detección de vehículos y el análisis de plazas libres de aparcamiento. Un segundo caso de estudio, permite demostrar la flexibilidad del marco de referencia propuesto para adaptarse a los requisitos de un entorno de vigilancia completamente distinto, como es un hogar inteligente donde el análisis automático de actividades de la vida cotidiana centra la atención del estudio. ABSTRACT One of the most ambitious objectives for the Computer Vision and Pattern Recognition research community is that machines can achieve similar capacities to the human's visual and cognitive system, and thus provide a trustworthy description of what is happening in the scene under surveillance. Thus, a number of well-established scenario understanding architectural frameworks to develop applications working on a variety of environments can be found in the literature. In this Thesis, a highly descriptive methodology for the development of scene understanding applications is presented. It consists of a set of formal guidelines to let machines extract and analyse, at different levels of abstraction and by means of independent processing modules that interact with each other, the necessary information to understand a broad set of different real World surveillance scenarios. Taking into account the challenges that working at both low and high levels offer, we contribute with a highly descriptive knowledge-based data model for the analysis of different situations in which people and vehicles are the main actors, leaving the door open for the development of interesting applications in diverse smart domains. Recommendations to let systems achieve high-level behaviour understanding will be also provided. Furthermore, feedback mechanisms are proposed to be integrated in order to let any system to understand better the environment and the logical context around, reducing thus the uncertainty and noise, and increasing its robustness and precision in front of low-level or high-level errors. As a result, a hierarchical cognitive architecture of reference which integrates the necessary perception, interpretation, attention and learning capabilities to overcome main challenges identified in this area of research is proposed; thus allowing to develop more robust, flexible and smart surveillance systems to cope with the different requirements of a variety of environments. Once crucial issues that should be treated explicitly in the design of this kind of systems have been formulated and discussed, experimental results shows the effectiveness of the proposed framework compared with other proposed in the past. Two case studies were implemented to test the capabilities of the framework. The first case study presents how the proposed framework can be used to create intelligent parking monitoring systems. The second case study demonstrates the flexibility of the system to cope with the requirements of a completely different environment, a smart home where activities of daily living are performed. Finally, general conclusions and future work lines to further enhancing the capabilities of the proposed framework are presented.
Resumo:
En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica: Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool). Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral. Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx. Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema. Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.
Resumo:
We thank Karim Gharbi and Urmi Trivedi for their assistance with RNA sequencing, carried out in the GenePool genomics facility (University of Edinburgh). We also thank Susan Fairley and Eduardo De Paiva Alves (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) for help with the initial bioinformatics analysis. We thank Aaron Mitchell for kindly providing the ALS3 mutant, Julian Naglik for the gift of TR146 cells, and Jon Richardson for technical assistance. We thank the Genomics and Bioinformatics core of the Faculty of Health Sciences for Next Generation Sequencing and Bioinformatics support, the Information and Communication Technology Office at the University of Macau for providing access to a High Performance Computer and Jacky Chan and William Pang for their expert support on the High Performance Computer. Finally, we thank Amanda Veri for generating CaLC2928. M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), R.A.F. by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship, L.E.C. by a Canada Research Chair in Microbial Genomics and Infectious Disease and by Canadian Institutes of Health Research Grants MOP-119520 and MOP-86452, A.J. P.B. was supported by the UK Biotechnology and Biological Sciences Research Council (BB/F00513X/1) and by the European Research Council (ERC-2009-AdG-249793-STRIFE), KHW is supported by the Science and Technology Development Fund of Macau S.A.R (FDCT) (085/2014/A2) and the Research and Development Administrative Office of the University of Macau (SRG2014-00003-FHS) and R.T.W. by the Burroughs Wellcome fund and NIH R15AO094406. Data availability RNA-sequencing data sets are available at ArrayExpress (www.ebi.ac.uk) under accession code E-MTAB-4075. ChIP-seq data sets are available at the NCBI SRA database (http://www.ncbi.nlm.nih.gov) under accession code SRP071687. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding author upon request.
Resumo:
This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.
Resumo:
The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.