909 resultados para Computational Complexity
Resumo:
The mixtures of factor analyzers (MFA) model allows data to be modeled as a mixture of Gaussians with a reduced parametrization. We present the formulation of a nonparametric form of the MFA model, the Dirichlet process MFA (DPMFA). The proposed model can be used for density estimation or clustering of high dimensiona data. We utilize the DPMFA for clustering the action potentials of different neurons from extracellular recordings, a problem known as spike sorting. DPMFA model is compared to Dirichlet process mixtures of Gaussians model (DPGMM) which has a higher computational complexity. We show that DPMFA has similar modeling performance in lower dimensions when compared to DPGMM, and is able to work in higher dimensions. ©2009 IEEE.
Resumo:
This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.
Resumo:
The unscented Kalman filter (UKF) is a widely used method in control and time series applications. The UKF suffers from arbitrary parameters necessary for a step known as sigma point placement, causing it to perform poorly in nonlinear problems. We show how to treat sigma point placement in a UKF as a learning problem in a model based view. We demonstrate that learning to place the sigma points correctly from data can make sigma point collapse much less likely. Learning can result in a significant increase in predictive performance over default settings of the parameters in the UKF and other filters designed to avoid the problems of the UKF, such as the GP-ADF. At the same time, we maintain a lower computational complexity than the other methods. We call our method UKF-L. ©2010 IEEE.
Resumo:
Most academic control schemes for MIMO systems assume all the control variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The multiplexed MPC scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, and hence improved performance, despite finding sub-optimal solutions to the original problem. The multiplexed MPC scheme is also closer to industrial practice in many cases. This paper presents initial stability results for two variants of multiplexed MPC, and illustrates the performance benefit by an example. Copyright copy; 2005 IFAC. Copyright © 2005 IFAC.
Resumo:
Information theoretic active learning has been widely studied for probabilistic models. For simple regression an optimal myopic policy is easily tractable. However, for other tasks and with more complex models, such as classification with nonparametric models, the optimal solution is harder to compute. Current approaches make approximations to achieve tractability. We propose an approach that expresses information gain in terms of predictive entropies, and apply this method to the Gaussian Process Classifier (GPC). Our approach makes minimal approximations to the full information theoretic objective. Our experimental performance compares favourably to many popular active learning algorithms, and has equal or lower computational complexity. We compare well to decision theoretic approaches also, which are privy to more information and require much more computational time. Secondly, by developing further a reformulation of binary preference learning to a classification problem, we extend our algorithm to Gaussian Process preference learning.
Resumo:
The unscented Kalman filter (UKF) is a widely used method in control and time series applications. The UKF suffers from arbitrary parameters necessary for sigma point placement, potentially causing it to perform poorly in nonlinear problems. We show how to treat sigma point placement in a UKF as a learning problem in a model based view. We demonstrate that learning to place the sigma points correctly from data can make sigma point collapse much less likely. Learning can result in a significant increase in predictive performance over default settings of the parameters in the UKF and other filters designed to avoid the problems of the UKF, such as the GP-ADF. At the same time, we maintain a lower computational complexity than the other methods. We call our method UKF-L. © 2011 Elsevier B.V.
Resumo:
This paper proposes a form of MPC in which the control variables are moved asynchronously. This contrasts with most MIMO control schemes, which assume that all variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The Multiplexed MPC (MMPC) scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, which may result in improved performance, despite finding sub-optimal solutions to the original problem. This paper describes nominal and robust MMPC, states some stability results, and demonstrates the effectiveness of MMPC through two examples. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper introduces a new formulation of variable horizon model predictive control (VH-MPC) that utilises move blocking for reducing computational complexity. Various results pertaining to move blocking are derived, following which, a generalised blocked VH-MPC controller is formulated for linear discrete-time systems. Robustness to bounded disturbances is ensured through the use of tightened constraints. The resulting time-varying control scheme is shown to guarantee robust recursive feasibility and finite-time completion. An example is then presented for a particular choice of blocking regime, as would be applicable to vehicle manœuvring problems. Simulations demonstrate the efficacy of the formulation. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Model compensation methods for noise-robust speech recognition have shown good performance. Predictive linear transformations can approximate these methods to balance computational complexity and compensation accuracy. This paper examines both of these approaches from a variational perspective. Using a matched-pair approximation at the component level yields a number of standard forms of model compensation and predictive linear transformations. However, a tighter bound can be obtained by using variational approximations at the state level. Both model-based and predictive linear transform schemes can be implemented in this framework. Preliminary results show that the tighter bound obtained from the state-level variational approach can yield improved performance over standard schemes. © 2011 IEEE.
Resumo:
In Multiplexed MPC, the control variables of a MIMO plant are moved asynchronously, following a pre-planned periodic sequence. The advantage of Multiplexed MPC lies in its reduced computational complexity, leading to faster response to disturbances, which may result in improved performance, despite finding sub-optimal solution to the original problem. This paper extends the original Multiplexed MPC in a way such that the control inputs are no longer restricted to a pre-planned periodic sequence. Instead, the most appropriate control input channel would be optimised and selected to counter the disturbances, hence the name 'Channel-Hopping'. In addition, the proposed algorithm is suitable for execution on modern computing platforms such as FPGA or GPU, exploits multi-core, parallel and pipeline computing techniques. The algorithm for the proposed Channel-hopping MPC (CH-MPC) will be described and its stability established. Illustrative examples are given to demonstrate the behaviour of the proposed Channel-Hopping MPC algorithm. © 2011 IFAC.
Resumo:
Model predictive control allows systematic handling of physical and operational constraints through the use of constrained optimisation. It has also been shown to successfully exploit plant redundancy to maintain a level of control in scenarios when faults are present. Unfortunately, the computational complexity of each individual iteration of the algorithm to solve the optimisation problem scales cubically with the number of plant inputs, so the computational demands are high for large MIMO plants. Multiplexed MPC only calculates changes in a subset of the plant inputs at each sampling instant, thus reducing the complexity of the optimisation. This paper demonstrates the application of multiplexed model predictive control to a large transport airliner in a nominal and a contingency scenario. The performance is compared to that obtained with a conventional synchronous model predictive controller, designed using an equivalent cost function. © 2012 AACC American Automatic Control Council).
Resumo:
This paper presents an efficient algorithm for robust network reconstruction of Linear Time-Invariant (LTI) systems in the presence of noise, estimation errors and unmodelled nonlinearities. The method here builds on previous work [1] on robust reconstruction to provide a practical implementation with polynomial computational complexity. Following the same experimental protocol, the algorithm obtains a set of structurally-related candidate solutions spanning every level of sparsity. We prove the existence of a magnitude bound on the noise, which if satisfied, guarantees that one of these structures is the correct solution. A problem-specific model-selection procedure then selects a single solution from this set and provides a measure of confidence in that solution. Extensive simulations quantify the expected performance for different levels of noise and show that significantly more noise can be tolerated in comparison to the original method. © 2012 IEEE.
Resumo:
An accurate description of atomic interactions, such as that provided by first principles quantum mechanics, is fundamental to realistic prediction of the properties that govern plasticity, fracture or crack propagation in metals. However, the computational complexity associated with modern schemes explicitly based on quantum mechanics limits their applications to systems of a few hundreds of atoms at most. This thesis investigates the application of the Gaussian Approximation Potential (GAP) scheme to atomistic modelling of tungsten - a bcc transition metal which exhibits a brittle-to-ductile transition and whose plasticity behaviour is controlled by the properties of $\frac{1}{2} \langle 111 \rangle$ screw dislocations. We apply Gaussian process regression to interpolate the quantum-mechanical (QM) potential energy surface from a set of points in atomic configuration space. Our training data is based on QM information that is computed directly using density functional theory (DFT). To perform the fitting, we represent atomic environments using a set of rotationally, permutationally and reflection invariant parameters which act as the independent variables in our equations of non-parametric, non-linear regression. We develop a protocol for generating GAP models capable of describing lattice defects in metals by building a series of interatomic potentials for tungsten. We then demonstrate that a GAP potential based on a Smooth Overlap of Atomic Positions (SOAP) covariance function provides a description of the $\frac{1}{2} \langle 111 \rangle$ screw dislocation that is in agreement with the DFT model. We use this potential to simulate the mobility of $\frac{1}{2} \langle 111 \rangle$ screw dislocations by computing the Peierls barrier and model dislocation-vacancy interactions to QM accuracy in a system containing more than 100,000 atoms.
Resumo:
State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.
Resumo:
In this paper, we propose a low complexity and reliable wideband spectrum sensing technique that operates at sub-Nyquist sampling rates. Unlike the majority of other sub-Nyquist spectrum sensing algorithms that rely on the Compressive Sensing (CS) methodology, the introduced method does not entail solving an optimisation problem. It is characterised by simplicity and low computational complexity without compromising the system performance and yet delivers substantial reductions on the operational sampling rates. The reliability guidelines of the devised non-compressive sensing approach are provided and simulations are presented to illustrate its superior performance. © 2013 IEEE.