923 resultados para Compression Metric
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.
Resumo:
Cluster based protocols like LEACH were found best suited for routing in wireless sensor networks. In mobility centric environments some improvements were suggested in the basic scheme. LEACH-Mobile is one such protocol. The basic LEACH protocol is improved in the mobile scenario by ensuring whether a sensor node is able to communicate with its cluster head. Since all the nodes, including cluster head is moving it will be better to elect a node as cluster head which is having less mobility related to its neighbours. In this paper, LEACH-Mobile protocol has been enhanced based on a mobility metric “remoteness” for cluster head election. This ensures high success rate in data transfer between the cluster head and the collector nodes even though nodes are moving. We have simulated and compared our LEACH-Mobile-Enhanced protocol with LEACHMobile. Results show that inclusion of neighbouring node information improves the routing protocol.
Resumo:
Extending IPv6 to IEEE 802.15.4-based Low power Wireless Personal Area Networks requires efficient header compression mechanisms to adapt to their limited bandwidth, memory and energy constraints. This paper presents an experimental evaluation of an improved header compression scheme which provides better compression of IPv6 multicast addresses and UDP port numbers compared to existing mechanisms. This scheme outperforms the existing compression mechanism in terms of data throughput of the network and energy consumption of nodes. It enhances throughput by up to 8% and reduces transmission energy of nodes by about 5%.
Resumo:
This work proposes a parallel genetic algorithm for compressing scanned document images. A fitness function is designed with Hausdorff distance which determines the terminating condition. The algorithm helps to locate the text lines. A greater compression ratio has achieved with lesser distortion
Resumo:
In this paper, an improved technique for evolving wavelet coefficients refined for compression and reconstruction of fingerprint images is presented. The FBI fingerprint compression standard [1, 2] uses the cdf 9/7 wavelet filter coefficients. Lifting scheme is an efficient way to represent classical wavelets with fewer filter coefficients [3, 4]. Here Genetic algorithm (GA) is used to evolve better lifting filter coefficients for cdf 9/7 wavelet to compress and reconstruct fingerprint images with better quality. Since the lifting filter coefficients are few in numbers compared to the corresponding classical wavelet filter coefficients, they are evolved at a faster rate using GA. A better reconstructed image quality in terms of Peak-Signal-to-Noise-Ratio (PSNR) is achieved with the best lifting filter coefficients evolved for a compression ratio 16:1. These evolved coefficients perform well for other compression ratios also.
Resumo:
In this article, techniques have been presented for faster evolution of wavelet lifting coefficients for fingerprint image compression (FIC). In addition to increasing the computational speed by 81.35%, the coefficients performed much better than the reported coefficients in literature. Generally, full-size images are used for evolving wavelet coefficients, which is time consuming. To overcome this, in this work, wavelets were evolved with resized, cropped, resized-average and cropped-average images. On comparing the peak- signal-to-noise-ratios (PSNR) offered by the evolved wavelets, it was found that the cropped images excelled the resized images and is in par with the results reported till date. Wavelet lifting coefficients evolved from an average of four 256 256 centre-cropped images took less than 1/5th the evolution time reported in literature. It produced an improvement of 1.009 dB in average PSNR. Improvement in average PSNR was observed for other compression ratios (CR) and degraded images as well. The proposed technique gave better PSNR for various bit rates, with set partitioning in hierarchical trees (SPIHT) coder. These coefficients performed well with other fingerprint databases as well.
Resumo:
This paper explains the Genetic Algorithm (GA) evolution of optimized wavelet that surpass the cdf9/7 wavelet for fingerprint compression and reconstruction. Optimized wavelets have already been evolved in previous works in the literature, but they are highly computationally complex and time consuming. Therefore, in this work, a simple approach is made to reduce the computational complexity of the evolution algorithm. A training image set comprised of three 32x32 size cropped images performed much better than the reported coefficients in literature. An average improvement of 1.0059 dB in PSNR above the classical cdf9/7 wavelet over the 80 fingerprint images was achieved. In addition, the computational speed was increased by 90.18 %. The evolved coefficients for compression ratio (CR) 16:1 yielded better average PSNR for other CRs also. Improvement in average PSNR was experienced for degraded and noisy images as well
Resumo:
The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images
Resumo:
Recurrent iterated function systems (RIFSs) are improvements of iterated function systems (IFSs) using elements of the theory of Marcovian stochastic processes which can produce more natural looking images. We construct new RIFSs consisting substantially of a vertical contraction factor function and nonlinear transformations. These RIFSs are applied to image compression.
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.
Resumo:
How the mathematical concept of Coarse Geometries is useful to analysing the Web
Resumo:
The primary objective of this study is to determine whether nonlinear frequency compression and linear transposition algorithms provide speech perception benefit in school-aged children.
Resumo:
This paper examines objective measures of speech production, specifically vowels. The relationship between the listener's perception of sections of the vowels with their perception of the entire vocalic utterance was examined.
Resumo:
This paper examines the selection of compression ratios for hearing aids.