986 resultados para Compound enhancement techniques
Resumo:
Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.
Resumo:
Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.
Resumo:
In recent years the interest in naturally occurring compounds has been increasing worldwide. Indeed, many of the bioactive compounds currently used as medicines have been synthesized based on the structure of natural compounds [1]. In order to obtain bioactive fractions and subsequently isolated compounds derived from natural matrices, several procedures have been carried out. One of these is to separate and assess the concentration of the active compound(s) present in the samples, a step in which the chromatographic techniques stand out [2]. In the present work the mushroom Sui/Ius granulatus (L.) Roussel was chemically characterized by chromatographic techniques coupled to different detectors, in order to evaluate the presence of nutritional and/or bioactive molecules. Some hydrophilic compounds, namely free sugars, were identified by high performance liquid chromatography coupled to a refraction index detector (HPLC-RI), and organic and phenolic acids were assessed by HPLC coupled to a photodiode array detector (HPLC-PDA). Regarding lipophilic compounds, fatty acids weredetermined by gas chromatography with a flame ionization detector (GC-FID) and tocopherols by HPLC-fluorescence detection. Mannitol and trehalose were the main free sugars detected. Different organic acids were also identified (i.e. oxalic, quinic and fumaric acids), as well as phenolic acids (i.e. gallic and p-hydroxybenzoic acids) and the related compound cinnamic acid. Mono- and polyunsaturated fatty acids were the prevailing fatty acids and a-, ~- and ~-tocopherol were the isoforms of vitamin E detected in the samples. Since this species proved to be a source of biologically active compounds, the antioxidant and antimicrobial properties were evaluated. The antioxidant activity was measured through the reducing power, free radical's scavenging activity and lipid peroxidation inhibition of its methanolic extract, and the antimicrobial activity was also tested in Gram positive and Gram negative bacteria and iri different fungi. S. granulatus presented antioxidant properties in all the performed assays, and proved to inhibit the growth of different bacterial and fungal strains. This study is a first step for classifying S. granulatus as a functional food, highlighting the potential of mushrooms as a source of nutraceutical and biologically active compounds.
Resumo:
Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.
Resumo:
This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.