968 resultados para Completely Bounded Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors propose a bit serial pipeline used to perform the genetic operators in a hardware genetic algorithm. The bit-serial nature of the dataflow allows the operators to be pipelined, resulting in an architecture which is area efficient, easily scaled and is independent of the lengths of the chromosomes. An FPGA implementation of the device achieves a throughput of >25 million genes per second

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long distance dispersal (LDD) plays an important role in many population processes like colonization, range expansion, and epidemics. LDD of small particles like fungal spores is often a result of turbulent wind dispersal and is best described by functions with power-law behavior in the tails ("fat tailed"). The influence of fat-tailed LDD on population genetic structure is reported in this article. In computer simulations, the population structure generated by power-law dispersal with exponents in the range of -2 to -1, in distinct contrast to that generated by exponential dispersal, has a fractal structure. As the power-law exponent becomes smaller, the distribution of individual genotypes becomes more self-similar at different scales. Common statistics like G(ST) are not well suited to summarizing differences between the population genetic structures. Instead, fractal and self-similarity statistics demonstrated differences in structure arising from fat-tailed and exponential dispersal. When dispersal is fat tailed, a log-log plot of the Simpson index against distance between subpopulations has an approximately constant gradient over a large range of spatial scales. The fractal dimension D-2 is linearly inversely related to the power-law exponent, with a slope of similar to -2. In a large simulation arena, fat-tailed LDD allows colonization of the entire space by all genotypes whereas exponentially bounded dispersal eventually confines all descendants of a single clonal lineage to a relatively small area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient finite difference scheme is presented for the inviscid terms of the three-dimensional, compressible flow equations for chemical non-equilibrium gases. This scheme represents an extension and an improvement of one proposed by the author, and includes operator splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book is a collection of articles devoted to the theory of linear operators in Hilbert spaces and its applications. The subjects covered range from the abstract theory of Toeplitz operators to the analysis of very specific differential operators arising in quantum mechanics, electromagnetism, and the theory of elasticity; the stability of numerical methods is also discussed. Many of the articles deal with spectral problems for not necessarily selfadjoint operators. Some of the articles are surveys outlining the current state of the subject and presenting open problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level set method is commonly used to address image noise removal. Existing studies concentrate mainly on determining the speed function of the evolution equation. Based on the idea of a Canny operator, this letter introduces a new method of controlling the level set evolution, in which the edge strength is taken into account in choosing curvature flows for the speed function and the normal to edge direction is used to orient the diffusion of the moving interface. The addition of an energy term to penalize the irregularity allows for better preservation of local edge information. In contrast with previous Canny-based level set methods that usually adopt a two-stage framework, the proposed algorithm can execute all the above operations in one process during noise removal.