986 resultados para Complementary DNA library
Resumo:
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (Sao Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140).
Resumo:
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFN gamma/TNF alpha, IFN gamma/IL-2 or TNF alpha/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFN gamma/TNF alpha/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses-elicited by other HIV immunogens.
Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling
Resumo:
Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.
Resumo:
The aim of this research was to assess the prevalence and predictors of complementary and alternative therapy (CAT) use among cancer patients in Australia. A total of 1492 cancer patients attending nine major public cancer treatment centers in New South Wales, Australia, were asked to complete the Supportive Care Needs Survey. Of the 1354 consenting patients, 888 (65%) returned a completed survey. This article reports the secondary analyses of the survey data, specifically focusing on CAT use. For all cancers, 17.1% of patients were using at least one CAT. The two main demographic characteristics of CAT users were gender and age, where females were more likely to use CAT than males and that CAT use declined as age increased. Time since diagnosis was identified as the only significant clinical predictor of CAT use, where CAT use increased with time until 5 years since diagnosis. Our research shows that herbal treatments and naturopathy are the most popular CAT used by cancer patients (constituting over 30% of all CAT use recorded). The use of CAT among cancer patients is a significant issue in cancer care, especially considering the potential interactions between CAT and conventional medicines. Given that many cancer patients may not be aware of potential risks associated with these interactions it is important that oncologists and others involved in cancer patient care are informed about CAT and its use amongst their patients.
Resumo:
A technique based on the polymerase chain reaction (PCR) for the specific detection of Phytophthora medicaginis was developed using nucleotide sequence information of the ribosomal DNA (rDNA) regions. The complete IGS 2 region between the 5 S gene of one rDNA repeat and the small subunit of the adjacent repeat was sequenced for P. medicaginis and related species. The entire nucleotide sequence length of the IGS 2 of P. medicaginis was 3566 bp. A pair of oligonucleotide primers (PPED04 and PPED05), which allowed amplification of a specific fragment (364 bp) within the IGS 2 of P. medicaginis using the PCR, was designed. Specific amplification of this fragment from P. medicaginis was highly sensitive, detecting template DNA as low as 4 ng and in a host-pathogen DNA ratio of 1000000:1. Specific PCR amplification using PPED04 and PPED05 was successful in detecting P. medicaginis in lucerne stems infected under glasshouse conditions and field infected lucerne roots. The procedures developed in this work have application to improved identification and detection of a wide range of Phytophthora spp. in plants and soil.
Resumo:
Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype-and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.
Resumo:
Encapsidation of circular DNA by papillomavirus capsid protein was investigated in Cos-1 cells. Plasmids carrying both an SV40 origin of replication (or) and an E. coli on were introduced into Cos-1 cells by DNA transfection. PV capsid proteins were supplied in trans by recombinant vaccinia viruses. Pseudovirions were purified from infected cells and their packaged DNA was extracted and used to transform E. coil as an indication of packaging efficacy. VLPs assembled from BPV-1 L1 alone packaged little plasmid DNA, whereas VLPs assembled from BPV-1 L1+L2 packaged plasmid DNA at least 50 times more effectively. BPV-1 L1+L2 VLPs packaged a plasmid containing BPV-1 sequence 8.2 +/- 3.1 times more effectively than a plasmid without BW sequences. Using a series of plasmid constructs comprising a core BPV-1 sequence and spacer DNA it was demonstrated that BW VLPs could accommodate a maximum of about 10.2 kb of plasmid DNA, and that longer closed circular DNA was truncated to produce less dense virions with shorter plasmid sequences. The present study suggests that packaging of genome within PV virions involves interaction of L2 protein with specific DNA sequences, and demonstrates that PV pseudovirions have the potential to be used as DNA delivery vectors for plasmids of up to 10.2 kb. (C) 1998 Academic Press.
Resumo:
Development of CD8 alpha beta CTL epitope-based vaccines requires an effective strategy capable of co-delivering large numbers of CTL epitopes, Here we describe a DNA plasmid encoding a polyepitope or polytope protein, which contained multiple contiguous minimal murine CTL epitopes, Mice vaccinated with this plasmid made MHC-restricted CTL responses to each of the epitopes, and protective CTL were demonstrated in recombinant vaccinia virus, influenza virus, and tumor challenge models, CTL responses generated by polytope DNA plasmid vaccination lasted for 1 yr, could be enhanced by co-delivering a gene for granulocyte-macrophage CSF, and appeared to be induced in the absence of CD4 T cell-mediated help, The ability to deliver large numbers of CTL epitopes using relatively small polytope constructs and DNA vaccination technology should find application in the design of human epitope-based CTL vaccines, in particular in vaccines against EBV, HIV, and certain cancers.
Resumo:
A novel screening strategy has been developed for the identification of alpha-chymotrypsin inhibitors from a phage peptide library. In this strategy, the standard affinity selection protocol was modified by adding a proteolytic cleavage period to avoid recovery of alpha-chymotrypsin substrates. After four cycles of selection and further activity assay, a group of related peptides were identified by DNA sequencing. These peptides share a consensus sequence motif as (S/T)RVPR(R/H). Then, a corresponding short peptide (Ac-ASRVPRRG-NH2) was synthesized chemically and proved to be an inhibitor of alpha-chymotrypsin. The present work provides a useful way for searching proteinase inhibitors without detailed knowledge of the molecular structure.
Resumo:
The carboxy terminal octapeptide of cholecystokinin (CCK8) is a hormone that binds high affinity receptors in a number of tissues including pancreas and pancreatic tumours. As part of our studies to develop effective gene therapy for the treatment of pancreatic cancers, we have investigated various gene delivery systems that depend on CCK8 receptor targeting. In this paper,we describe the synthesis of a CCK8-DNA complex designed to deliver foreign DNA to cholecystokinin receptor-positive cells. CCK8 was ligated to avidin and then complexed to linearis biotinylated DNA (pSV-CAT). The uptake of P-32-labelled CCK8-DNA complex by rat pancreatic acini was linear with time over 4 h with 65-70% of uptake inhibited by 100 nM CCK8. The complex appeared to be internalised since it could not be removed by acid wash. When administered intra-arterially, the complex was rapidly removed from the circulation with no evidence of targeted delivery to the pancreas, However, following a single intraperitoneal dose, the pancreas accumulated-5- 8% of the total administered complex by 24 h. These results suggest that peptide-dependent gene delivery to CCK receptor positive cells in vivo is feasible but, when administered directly into the circulation, diffusional barriers across the endothelium may limit distribution to peripheral tissues. Intraperitoneal administration therefore may be a useful alternative for targeting the pancreas.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
Phosphorylation of the tumor suppressor p53 is generally thought to modify the properties of the protein in four of its five independent domains. We used synthetic peptides to directly study the effects of phosphorylation on the non-sequence-specific DNA binding and conformation of the C-terminal, basic domain. The peptides corresponded to amino acids 361-393 and were either nonphosphorylated or phosphorylated at the protein kinase C (PKC) site, Ser378, or the casein kinase II (CKII) site, Ser392, or bis-phosphorylated on both the PKC and the CKII sites. A fluorescence polarization analysis revealed that either the recombinant p53 protein or the synthetic peptides bound to two unrelated target DNA fragments. Phosphorylation of the peptide at the PKC or the CKII sites clearly decreased DNA binding, and addition of a second phosphate group almost completely abolished binding. Circular dichroism spectroscopy showed that the peptides assumed identical unordered structures in aqueous solutions. The unmodified peptide, unlike the Ser378 phosphorylated peptide, changed conformation in the presence of DNA. The inherent ability of the peptides to form an alpha-helix could be detected when circular dichroism and nuclear magnetic resonance spectra were: taken in trifluoroethanol-water mixtures. A single or double phosphorylation destabilized the helix around the phosphorylated Ser378 residue but stabilized the helix downstream in the sequence.