239 resultados para Combinatorics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let k and l be positive integers. With a graph G, we associate the quantity c(k,l)(G), the number of k-colourings of the edge set of G with no monochromatic matching of size l. Consider the function c(k,l) : N --> N given by c(k,l)(n) = max {c(k,l)(G): vertical bar V(G)vertical bar = n}, the maximum of c(k,l)(G) over all graphs G on n vertices. In this paper, we determine c(k,l)(n) and the corresponding extremal graphs for all large n and all fixed values of k and l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For fixed positive integers r, k and E with 1 <= l < r and an r-uniform hypergraph H, let kappa(H, k, l) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least l elements. Consider the function KC(n, r, k, l) = max(H epsilon Hn) kappa(H, k, l), where the maximum runs over the family H-n of all r-uniform hypergraphs on n vertices. In this paper, we determine the asymptotic behavior of the function KC(n, r, k, l) for every fixed r, k and l and describe the extremal hypergraphs. This variant of a problem of Erdos and Rothschild, who considered edge colorings of graphs without a monochromatic triangle, is related to the Erdos-Ko-Rado Theorem (Erdos et al., 1961 [8]) on intersecting systems of sets. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We find conditions for two piecewise 'C POT.2+V' homeomorphisms f and g of the circle to be 'C POT.1' conjugate. Besides the restrictions on the combinatorics of the maps (we assume that the maps have bounded combinatorics), and necessary conditions on the one-side derivatives of points where f and g are not differentiable, we also assume zero mean-nonlinearity for f and g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Vorhersagen störungstheoretischer Quantenfeldtheorienzeigen eine gute Übereinstimmung mit experimentellgemessenen Werten. Bei diesen störungstheoretischenBerechnungen treten allerdings Ultraviolettdivergenzen auf,die keine physikalische Interpretation der Ergebnisseermöglichen. Durch Renormierung dieser Theorien erhält manjedoch berechnbare Ergebnisse mit hoher experimentellerVorhersagekraft. Der Renormierungsvorgang kann durch eineHopfalgebra, die sogenannte 'Hopfalgebra der Wurzelbäume',beschrieben werden.Die vorliegende Arbeit leistet einen Beitrag für weitereUntersuchungen dieser Hopfalgebrenstruktur und Bestimmungneuer mathematischer Methoden zur Beschreibung desRenormierungsvorgangs. Dazu wird die algebraische Strukturvon Renormierung aus der Sicht der Kategorientheorie und derTheorie von Operaden untersucht.Aus Sicht der Kategorientheorie lassen sich die den Renormierungsprozess beschreibenden mathematischen Größen ineiner Kategorie zusammenfassen. Eine additive Strukturermöglicht dabei die Berücksichtigung beliebigerRenormierungsschemata. Auf dieser Kategorie kann einassoziativitätsverletzendes Produkt definiert werden, wobeidie Verletzung durch einen sogenannten 'Assoziator'kontrolliert werden kann. Die Struktur wird auf die einerHopfkategorie erweitert, so daß eine kategorientheoretischeUntersuchung des Renormierungsprozesses ermöglicht wird.Diese Hopfkategorie wird aus Sicht von Renormierunginterpretiert, wobei Beispielrechnungen die definierteStruktur verdeutlichen.Aus algebraischer Sicht kann aufgrund der graphischenDarstellung des Operadenproduktes eine Bijektivität zwischenWurzelbäumen und Operaden gezeigt werden. Auf diesenOperaden kann wiederum eine Hopfalgebrenstruktur definiertwerden. Beispiele verdeutlichen diese Bijektivität.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reiner, Shaw and van Willigenburg showed that if two skew Schur functions sA and sB are equal, then the skew shapes $A$ and $B$ must have the same "row overlap partitions." Here we show that these row overlap equalities are also implied by a much weaker condition than Schur equality: that sA and sB have the same support when expanded in the fundamental quasisymmetric basis F. Surprisingly, there is significant evidence supporting a conjecture that the converse is also true. In fact, we work in terms of inequalities, showing that if the F-support of sA contains that of sB, then the row overlap partitions of A are dominated by those of B, and again conjecture that the converse also holds. Our evidence in favor of these conjectures includes their consistency with a complete determination of all F-support containment relations for F-multiplicity-free skew Schur functions. We conclude with a consideration of how some other quasisymmetric bases fit into our framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los materiales de banda intermedia han atraido la atención de la comunidad científica en el campo de la energía solar fotovoltaica en los últimos años. Sin embargo, con el objetivo de entender los fundamentos de las células solares de banda intermedia, se debe llevar a cabo un estudio profundo de la características de los materiales. Esto se puede hacer mediante un modelo teórico usando Primeros Principios. A partir de este enfoque se pueden obtener resultados tales como la estructura electrónica y propiedades ópticas, entre otras, de los semiconductores fuertemente dopados y sus precursores. Con el fin de desentrañar las estructuras de estos sistemas electrónicos, esta tesis presenta un estudio termodinámico y optoelectrónico de varios materiales fotovoltaicos. Específicamente se caracterizaron los materiales avanzados de banda intermedia y sus precursores. El estudio se hizo en términos de caracterización teórica de la estructura electrónica, la energética del sistema, entre otros. Además la estabilidad se obtuvo usando configuraciones adaptadas a la simetría del sistema y basado en la combinatoria. Las configuraciones de los sitios ocupados por defectos permiten obtener información sobre un espacio de configuraciones donde las posiciones de los dopantes sustituidos se basan en la simetría del sólido cristalino. El resultado puede ser tratado usando elementos de termodinámica estadística y da información de la estabilidad de todo el espacio simétrico. Además se estudiaron otras características importantes de los semiconductores de base. En concreto, el análisis de las interacciones de van der Waals fueron incluidas en el semiconductor en capas SnS2, y el grado de inversión en el caso de las espinelas [M]In2S4. En este trabajo además realizamos una descripción teórica exhaustiva del sistema CdTe:Bi. Este material de banda-intermedia muestra características que son distintas a las de los otros materiales estudiados. También se analizó el Zn como agente modulador de la posición de las sub-bandas prohibidas en el material de banda-intermedia CuGaS2:Ti. Analizándose además la viabilidad termodinámica de la formación de este compuesto. Finalmente, también se describió el GaN:Cr como material de banda intermedia, en la estructura zinc-blenda y en wurtztite, usando configuraciones de sitios ocupados de acuerdo a la simetría del sistema cristalino del semiconductor de base. Todos los resultados, siempre que fue posible, fueron comparados con los resultados experimentales. ABSTRACT The intermediate-band materials have attracted the attention of the scientific community in the field of the photovoltaics in recent years. Nevertheless, in order to understand the intermediate-band solar cell fundamentals, a profound study of the characteristics of the materials is required. This can be done using theoretical modelling from first-principles. The electronic structure and optical properties of heavily doped semiconductors and their precursor semiconductors are, among others, results that can be obtained from this approach. In order to unravel the structures of these crystalline systems, this thesis presents a thermodynamic and optoelectronic study of several photovoltaic materials. Specifically advanced intermediate-band materials and their precursor semiconductors were characterized. The study was made in terms of theoretical characterization of the electronic structure, energetics among others. The stability was obtained using site-occupancy-disorder configurations adapted to the symmetry of the system and based on combinatorics. The site-occupancy-disorder method allows the formation of a configurational space of substitutional dopant positions based on the symmetry of the crystalline solid. The result, that can be treated using statistical thermodynamics, gives information of the stability of the whole space of symmetry of the crystalline lattice. Furthermore, certain other important characteristics of host semiconductors were studied. Specifically, the van der Waal interactions were included in the SnS2 layered semiconductor, and the inversion degree in cases of [M]In2S4 spinels. In this work we also carried out an exhaustive theoretical description of the CdTe:Bi system. This intermediate-band material shows characteristics that are distinct from those of the other studied intermediate-band materials. In addition, Zn was analysed as a modulator of the positions of the sub-band gaps in the CuGaS2:Ti intermediate-band material. The thermodynamic feasibility of the formation of this compound was also carried out. Finally GaN:Cr intermediate-band material was also described both in the zinc-blende and the wurtztite type structures, using the symmetry-adapted-space of configurations. All results, whenever possible, were compared with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show the existence of sets with n points (n ? 4) for which every convex decomposition contains more than (35/32)n?(3/2) polygons,which refutes the conjecture that for every set of n points there is a convex decomposition with at most n+C polygons. For sets having exactly three extreme pointswe show that more than n+sqr(2(n ? 3))?4 polygons may be necessary to form a convex decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article studies generated scales having exactly three different step sizes within the language of algebraic combinatorics on words. These scales and their corresponding step-patterns are called non well formed. We prove that they can be naturally inserted in the Christoffel tree of well-formed words. Our primary focus in this study is on the left- and right-Lyndon factorization of these words. We will characterize the non-well-formed words for which both factorizations coincide. We say that these words satisfy the LR property and show that the LR property is satisfied exactly for half of the non-well-formed words. These are symmetrically distributed in the extended Christoffel tree. Moreover, we find a surprising connection between the LR property and the Christoffel duality. Finally, we prove that there are infinitely many Christoffel–Lyndon words among the set of non-well-formed words and thus there are infinitely many generated scales having as step-pattern a Christoffel–Lyndon word.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let K(r, s, t) denote the complete tripartite graph with partite sets of size r, s and t, where r less than or equal to s less than or equal to t. Let D be the graph consisting of a triangle with an edge attached. We show that K(r, s, t) may be decomposed into copies of D if and only if 4 divides rs + st + rt and t less than or equal to 3rs/(r + s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this note we first introduce balanced critical sets and near balanced critical sets in Latin squares. Then we prove that there exist balanced critical sets in the back circulant Latin squares of order 3n for n even. Using this result we decompose the back circulant Latin squares of order 3n, n even, into three isotopic and disjoint balanced critical sets each of size 3n. We also find near balanced critical sets in the back circulant Latin squares of order 3n for n odd. Finally, we examine representatives of each main class of Latin squares of order up to six in order to determine which main classes contain balanced or near balanced critical sets.