987 resultados para Cocktail of phages
Resumo:
Cosmids from the 1A3–1A10 region of the complete miniset were individually subcloned by using the vector M13 mp18. Sequences of each cosmid were assembled from about 400 DNA fragments generated from the ends of these phage subclones and merged into one 189-kb contig. About 160 ORFs identified by the CodonUse program were subjected to similarity searches. The biological functions of 80 ORFs could be assigned reliably by using the WIT and Magpie genome investigation tools. Eighty percent of these recognizable ORFs were organized in functional clusters, which simplified assignment decisions and increased the strength of the predictions. A set of 26 genes for cobalamin biosynthesis, genes for polyhydroxyalkanoic acid metabolism, DNA replication and recombination, and DNA gyrase were among those identified. Most of the ORFs lacking significant similarity with reference databases also were grouped. There are two large clusters of these ORFs, one located between 45 and 67 kb of the map, and the other between 150 and 183 kb. Nine of the loosely identified ORFs (of 15) of the first of these clusters match ORFs from phages or transposons. The other cluster also has four ORFs of possible phage origin.
Resumo:
In Escherichia coli, programmed cell death is mediated through “addiction modules” consisting of two genes; the product of one gene is long-lived and toxic, whereas the product of the other is short-lived and antagonizes the toxic effect. Here we show that the product of λrexB, one of the few genes expressed in the lysogenic state of bacteriophage λ, prevents cell death directed by each of two addiction modules, phd-doc of plasmid prophage P1 and the rel mazEF of E. coli, which is induced by the signal molecule guanosine 3′,5′-bispyrophosphate (ppGpp) and thus by amino acid starvation. λRexB inhibits the degradation of the antitoxic labile components Phd and MazE of these systems, which are substrates of ClpP proteases. We present a model for this anti-cell death effect of λRexB through its action on the ClpP proteolytic subunit. We also propose that the λrex operon has an additional function to the well known phenomenon of exclusion of other phages; it can prevent the death of lysogenized cells under conditions of nutrient starvation. Thus, the rex operon may be considered as the “survival operon” of phage λ.
Resumo:
Sound localization relies on the neural processing of monaural and binaural spatial cues that arise from the way sounds interact with the head and external ears. Neurophysiological studies of animals raised with abnormal sensory inputs show that the map of auditory space in the superior colliculus is shaped during development by both auditory and visual experience. An example of this plasticity is provided by monaural occlusion during infancy, which leads to compensatory changes in auditory spatial tuning that tend to preserve the alignment between the neural representations of visual and auditory space. Adaptive changes also take place in sound localization behavior, as demonstrated by the fact that ferrets raised and tested with one ear plugged learn to localize as accurately as control animals. In both cases, these adjustments may involve greater use of monaural spectral cues provided by the other ear. Although plasticity in the auditory space map seems to be restricted to development, adult ferrets show some recovery of sound localization behavior after long-term monaural occlusion. The capacity for behavioral adaptation is, however, task dependent, because auditory spatial acuity and binaural unmasking (a measure of the spatial contribution to the “cocktail party effect”) are permanently impaired by chronically plugging one ear, both in infancy but especially in adulthood. Experience-induced plasticity allows the neural circuitry underlying sound localization to be customized to individual characteristics, such as the size and shape of the head and ears, and to compensate for natural conductive hearing losses, including those associated with middle ear disease in infancy.
Resumo:
The O-antigenic repeating units of lipopolysaccharides from Salmonella serogroups A, B, and D1 serve as receptors for the phage P22 tailspike protein, which also has receptor destroying endoglycosidase (endorhamnosidase) activity, integrating the functions of both hemagglutinin and neuraminidase in influenza virus. Crystal structures of the tailspike protein in complex with oligosaccharides, comprising two O-antigenic repeating units from Salmonella typhimurium, Salmonella enteritidis, and Salmonella typhi 253Ty were determined at 1.8 A resolution. The active-site topology with Asp-392, Asp-395, and Glu-359 as catalytic residues was identified. Kinetics of binding and cleavage suggest a role of the receptor destroying endorhamnosidase activity primarily for detachment of newly assembled phages.
Resumo:
Genomic similarities and contrasts are investigated in a collection of 23 bacteriophages, including phages with temperate, lytic, and parasitic life histories, with varied sequence organizations and with different hosts and with different morphologies. Comparisons use relative abundances of di-, tri-, and tetranucleotides from entire genomes. We highlight several specific findings. (i) As previously shown for cellular genomes, each viral genome has a distinctive signature of short oligonucleotide abundances that pervade the entire genome and distinguish it from other genomes. (ii) The enteric temperate double-stranded (ds) phages, like enterobacteria, exhibit significantly high relative abundances of GpC = GC and significantly low values of TA, but no such extremes exist in ds lytic phages. (iii) The tetranucleotide CTAG is of statistically low relative abundance in most phages. (iv) The DAM methylase site GATC is of statistically low relative abundance in most phages, but not in P1. This difference may relate to controls on replication (e.g., actions of the host SeqA gene product) and to MutH cleavage potential of the Escherichia coli DAM mismatch repair system. (v) The enteric temperate dsDNA phages form a coherent group: they are relatively close to each other and to their bacteria] hosts in average differences of dinucleotide relative abundance values. By contrast, the lytic dsDNA phages do not form a coherent group. This difference may come about because the temperate phages acquire more sequence characteristics of the host because they use the host replication and repair machinery, whereas the analyzed lytic phages are replicated by their own machinery. (vi) The nonenteric temperate phages with mycoplasmal and mycobacterial hosts are relatively close to their respective hosts and relatively distant from any of the enteric hosts and from the other phages. (vii) The single-stranded RNA phages have dinucleotide relative abundance values closest to those for random sequences, presumably attributable to the mutation rates of RNA phages being much greater than those of DNA phages.
Innovative analytical strategies for the development of sensor devices and mass spectrometry methods
Resumo:
Il lavoro presentato in questa tesi di Dottorato è incentrato sullo sviluppo di strategie analitiche innovative basate sulla sensoristica e su tecniche di spettrometria di massa in ambito biologico e della sicurezza alimentare. Il primo capitolo tratta lo studio di aspetti metodologici ed applicativi di procedure sensoristiche per l’identificazione e la determinazione di biomarkers associati alla malattia celiaca. In tale ambito, sono stati sviluppati due immunosensori, uno a trasduzione piezoelettrica e uno a trasduzione amperometrica, per la rivelazione di anticorpi anti-transglutaminasi tissutale associati a questa malattia. L’innovazione di questi dispositivi riguarda l’immobilizzazione dell’enzima tTG nella conformazione aperta (Open-tTG), che è stato dimostrato essere quella principalmente coinvolta nella patogenesi. Sulla base dei risultati ottenuti, entrambi i sistemi sviluppati si sono dimostrati una valida alternativa ai test di screening attualmente in uso per la diagnosi della celiachia. Rimanendo sempre nel contesto della malattia celiaca, ulteriore ricerca oggetto di questa tesi di Dottorato, ha riguardato lo sviluppo di metodi affidabili per il controllo di prodotti “gluten-free”. Il secondo capitolo tratta lo sviluppo di un metodo di spettrometria di massa e di un immunosensore competitivo per la rivelazione di prolammine in alimenti “gluten-free”. E’ stato sviluppato un metodo LC-ESI-MS/MS basato su un’analisi target con modalità di acquisizione del segnale selected reaction monitoring per l’identificazione di glutine in diversi cereali potenzialmente tossici per i celiaci. Inoltre ci si è focalizzati su un immunosensore competitivo per la rivelazione di gliadina, come metodo di screening rapido di farine. Entrambi i sistemi sono stati ottimizzati impiegando miscele di farina di riso addizionata di gliadina, avenine, ordeine e secaline nel caso del sistema LC-MS/MS e con sola gliadina nel caso del sensore. Infine i sistemi analitici sono stati validati analizzando sia materie prime (farine) che alimenti (biscotti, pasta, pane, etc.). L’approccio sviluppato in spettrometria di massa apre la strada alla possibilità di sviluppare un test di screening multiplo per la valutazione della sicurezza di prodotti dichiarati “gluten-free”, mentre ulteriori studi dovranno essere svolti per ricercare condizioni di estrazione compatibili con l’immunosaggio competitivo, per ora applicabile solo all’analisi di farine estratte con etanolo. Terzo capitolo di questa tesi riguarda lo sviluppo di nuovi metodi per la rivelazione di HPV, Chlamydia e Gonorrhoeae in fluidi biologici. Si è scelto un substrato costituito da strips di carta in quanto possono costituire una valida piattaforma di rivelazione, offrendo vantaggi grazie al basso costo, alla possibilità di generare dispositivi portatili e di poter visualizzare il risultato visivamente senza la necessità di strumentazioni. La metodologia sviluppata è molto semplice, non prevede l’uso di strumentazione complessa e si basa sull’uso della isothermal rolling-circle amplification per l’amplificazione del target. Inoltre, di fondamentale importanza, è l’utilizzo di nanoparticelle colorate che, essendo state funzionalizzate con una sequenza di DNA complementare al target amplificato derivante dalla RCA, ne permettono la rivelazione a occhio nudo mediante l’uso di filtri di carta. Queste strips sono state testate su campioni reali permettendo una discriminazione tra campioni positivi e negativi in tempi rapidi (10-15 minuti), aprendo una nuova via verso nuovi test altamente competitivi con quelli attualmente sul mercato.
Resumo:
The development of multi-target drugs for treating complex multifactorial diseases constitutes an active research ield. This kind of drugs has gained much importance as alternative strategy to combination therapy (“cocktail drugs”).1 A common way to design them brings together two different pharmacophores in one single molecule (so-called dyads). Following this idea and being aware that xanthones2 and 1,2,3-triazoles3 possess important pharmacological properties, we combined these two heterocycles in one molecule to create new dyads with improved therapeutic potential. In this work, new xanthone-1,2,3-triazole dyads were prepared from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones by two different approaches to evaluate their eficiency and sustainability. Both methodologies involved Diels-Alder reactions to build the xanthone core, which were optimized using microwave irradiation as alternative heating method, and 1,3-dipolar cycloadditions to insert the 1,2,3-triazole moiety (Figure 1).4 All final and intermediate compounds were fully characterized by 1D and 2D NMR techniques.
Resumo:
Monocyte-derived dendritic cells (MoDCs) in clinical use for cancer immunotherapy are ideally generated in serum-free medium (SFM) with inclusion of a suitable maturation factor toward the end of the incubation period. Three good manfacturing practice (GMP) grade SFMs (AIM-V, X-VIVO 15, and X-VIVO 20) were compared with RPMI-1640, supplemented with 10% fetal bovine serum or 10% human serum. DCs generated for 7 days in SFM were less mature and secreted less interleukin (IL) 12p70 and IL-10 than DCs generated in 10% serum. DC yield was comparable in SFMs, and a greater proportion of cells was viable after maturation. Toll-like receptor (TLR) ligands were compared for their ability to induce cytokine secretion under serum-free conditions in the presence of interferon (IFN) gamma. With the exception of Poly I:C, TLR ligands stimulated high levels of IL-10 secretion. High levels of IL-12p70 were induced by two TLR4-mediated stimuli, lipopolysaccharide and Ribomunyl, a clinical-grade bacterial extract. When T-cell responses were compared in allogeneic mixed leukocyte reaction, DCs stimulated with Ribomunyl induced higher levels of IFN gamma than DCs stimulated with the cytokine cocktail: tumor necrosis factor-alpha, IL-1 beta, IL-6, and prostaglandin E-2. In the presence of IL-10 neutralizing antibodies, DC IL-12p70 production and T-cell IFN gamma were increased in vitro. Similarly, DCs stimulated with Ribomunyl, IFN gamma, and anti-IL-10 induced high levels of tetanus toxoid-specific T-cell proliferation and IFN gamma secretion. Thus, MoDCs generated ill SFM efficiently stimulate T-cell IFN gamma production after maturation in the presence of a clinical-grade TLR4 agonist and IL-10 neutralization.
Resumo:
In recent times, PSA screening and a substantial increase in prostate needle biopsies have not only resulted in detection of minute foci of cancer but have also very likely resulted in increased detection of atypical glandular proliferations. Not uncommonly, there are only a limited number of atypical glands in these biopsies, and these require careful evaluation to enable an accurate diagnosis. We describe diagnostic implications, use of immunohistochemistry, and clinical significance of these lesions. Foci of atypical glands, also labeled atypical small acinar proliferation of uncertain significance, have features suspicious for but not diagnostic of cancer. Atypical foci include a broad group of lesions of differing clinical significance. These include benign, small acinar proliferations mimicking prostate cancer and atypical glandular proliferations suspicious for carcinoma. Definite diagnosis requires accurate histopathologic assessment and judicious use of immunohistochemistry. Patients with atypical glands on prostate needle biopsy have a high risk for harboring cancer and therefore have an increased risk for having cancer detected in subsequent biopsies.
Resumo:
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.
Resumo:
The operator hairpin ahead of the replicase gene in RNA bacteriophage MS2 contains overlapping signals for binding the coat protein and ribosomes. Coat protein binding inhibits further translation of the gene and forms the first step in capsid formation. The hairpin sequence was partially randomized to assess the importance of this structure element for the bacteriophage and to monitor alternative solutions that would evolve on the passaging of mutant phages. The evolutionary reconstruction of the operator failed in the majority of mutants. Instead, a poor imitation developed containing only some of the recognition signals for the coat protein. Three mutants were of particular interest in that they contained double nonsense codons in the lysis reading frame that runs through the operator hairpin. The simultaneous reversion of two stop codons into sense codons has a very low probability of occurring. Therefore the phage solved the problem by deleting the nonsense signals and, in fact, the complete operator, except for the initiation codon of the replicase gene. Several revertants were isolated with activities ranging from 1% to 20% of wild type. The operator, long thought to be a critical regulator, now appears to be a dispensable element. In addition, the results indicate how RNA viruses can be forced to step back to an attenuated form.
Resumo:
Majority of the microbial activity in humans is in the form of biofilms i.e. an Exopolysaccharide-enclosed bacterial mass. Unlike planktonic cells and the cells on the surface of the biofilm, the biofilm-embedded cells are more resistant to the effects of the antibiotics and the host cellular defense mechanisms. A combination of biofilm growth and inherent resistance prevents effective antibiotics treatment of Pseudomonas aeruginosa infections including those in patients with cystic fibrosis. This has lead to an increasing interest in alternative modalities of treatment. Thus, phages that multiply in situ, only in the presence of susceptible hosts can be used as natural, self-limiting, and deeply penetrating antibacterial agents. The objective of this study is to identify effective phages against a collection of P. aeruginosa isolates (PCOR strains) including the prototype PAOl and the isogenic constitutively alginate-producing PD0300 strains.These PCOR strains were tested against six phages (P105, P134, P140, P168, P175B and P182). Analysis shows 69 % of the PCOR isolates are sensitive and the rest are resistant to all six phages. These phages were then tested for their ability to inhibit biofilm formation using a modified biofilm assay. The analysis demonstrated that the sensitive strains showed increased resistance but none of the sensitive strains from the initial screening were resistant. Using the minimum biofilm eradication concentration (MBEC) assay for biofilm formation, the biofilm eradication ability of the phages was tested. The data showed that a higher volume of phage was required to eradicate preformed biofilms than the volume required to prevent colonization of planktonic cells. This data supports the idea of phage therapy more as a prophylactic treatment.
Resumo:
Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼ 3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem.
Resumo:
Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7%) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7% - 49.5% identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin and spanins) and shows 29-98% homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60°C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest the AP3 phage is a promising potent agent against bacteria belonging to most common B. cenocepacia IIIA lineage strains.
Resumo:
The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.