958 resultados para Coaxial cavities
Resumo:
The present investigation observed the sealing ability of low shrinkage composite resins in large and deep cavities, placed and photocured in one increment. Large, deep cavities (5.0 mm diameter and 2.5 mm deep) surrounded by enamel were prepared in bovine teeth, which were then divided into five groups. Groups 1, 2, 3 and 4: acid conditioning + Adper Single Bond (3M/ESPE, St Paul, MN, USA) and restoration with Aelite LS Posterior (BISCO Inc. Schaumburg, IL, USA) (G1); Filtek Z-350 (3M/ESPE,St Paul, MN, USA) (G2); Filtek Z-350 Flow (3M/ESPE, St Paul, MN, USA) (G3); Premisa (KERR Corporation, Orange, CA, USA) (G4). Group 5: Silorane Adhesive system (3M/ESPE, St Paul, MN, USA) + restoration with Filtek Low Shrinkage Posterior P90 (3M/ESPE, St Paul, MN, USA). After polymerization, the teeth were immersed in 0.5% basic fuchsine solution and immediately washed. Using the Imagetool Software, the extent of dye along the margins was calculated as a percentage of total perimeter. The restorations were then transversally sectioned and the depth of dye penetration was calculated in mm, using the same software. Kruskal-Wallis analysis for all groups showed no statistical differences for extent (p = 0.54) or depth (p = 0.8364) of dye penetration. According to this methodology, the so-called low shrinkage composite resins had the same sealing ability compared to regular and flowable nanocomposite materials.
Resumo:
Objectives: To determine the marginal adaptation of bulk-fill composites in class II MO cavities.Methods: Standardized class II MO cavities with bevelled enamel margins were prepared in 40 extracted human molars. The teeth were randomly assigned to one of the five experimental groups (n = 8). The teeth were restored with two horizontal increments of composite (4 mm and 2 mm thickness). The experimental groups were (1st/2nd increment): Gr. A - Venus Bulk-Fill/Venus Diamond; Gr. B - Tetric EvoCeram BulkFill/Tetric EvoCeram; Gr. C - Surefil SDR/Ceram-X; Gr. D - SonicFill; Gr. E - Ceram-X/Ceram-X (control). After finishing procedures, impressions were made using a polyvinyl siloxane and epoxy resin replicas were obtained. Thermo-mechanical stressing was carried out 24 h after the restorative procedure. All specimens were submitted to 240,000 occlusal loading and simultaneous 600 thermal cycles in water at 5 degrees C and 50 degrees C. After loading, a new set of epoxy resin replicas was obtained. Scanning electron microscopy was carried out at 200x magnification. Results for the marginal adaptation were expressed as percentages of continuity relative to the exposed interface and analyzed by ANOVA and Duncan post hoc test (p < 0.05).Results: In enamel, no significant differences were detected before and after thermo-mechanical loading between groups. In dentine, the worst results were observed in Gr. A.Conclusion: By applying simple layering techniques, bulk-fill materials do not allow better marginal adaptation than a standard composite. Clinical significance: A new class of resin-base composite (bulk-fill) was recently launched on the market. The bulk-fill composites exhibited adequate marginal adaptation and similar to the results of the standard composite. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the influence of chlorhexidine and Er, Cr:YSGG laser irradiation on the bond strength and external adaptation in mixed healthy and caries-affected class V cavities before and after thermal cycling. Thirty-six cavity preparations were made in mixed class V buccal human molars, half of them being artificially caries-induced. Any remaining affected dentin was removed from the cavity with a round burr at low speed. The teeth were divided into six groups, according to cleaning agent for both healthy and caries-induced dentin: no treatment, chlorhexidine and erbium, chromium-doped: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation. A Filtek P90 (3M ESPE, St Paul, MN, USA) silorane adhesive restorative system was used. The specimens were subjected to 5000 thermal cycles (5-55 degrees C 60 min). Epoxy replicas were obtained to characterize the external adaptation under scanning electron microscopy. The average percentages of non-continuous margins were 5.41% and 6.49% in enamel dentin before thermal cycling and 25% and 33.7% after thermal cycling, respectively. The caries-affected and laser irradiated cavities showed higher non-continuous margins. Thermal cycling was able to raise the percentage of non-continuous margin for all groups. Chlorhexidine did not affect the marginal adaptation results, and the Er,Cr:YSGG laser irradiation showed significantly worse results compared with the control group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sol–gel derived poly(oxyethylene)/siloxane organic–inorganic di-ureasil hybrids containing different amounts (20–60% mol) of methacrylic acid (McOH) modified zirconium oxo-clusters (Zr-OMc) were processed as thin films and transparent and shape controlled monoliths. Laser direct writing was used to create channel waveguides, Bragg gratings, Fabry–Perot cavities and optical filters. The resulting Fabry–Perot optical cavity displays a free spectral range of 16.55 GHz and a fringe intensity contrast of 5.35 dB. Optical rejection values between 6.7 and 10.4 dB were obtained by varying the amount of the Zr-OMc oxo-clusters.
Resumo:
This study evaluated the effect of Er,Cr:YSGG laser irradiation on the external adaptation of composite resin restorations in caries-affected cavities. Mixed class V cavity preparations were performed in 36 intact human third molars, in half of which caries was artificially induced. Both healthy and carious dentin were etched with 35% phosphoric acid (Ultradent Products Inc., South Jordan, Utah, USA), and the teeth were divided into three groups, i.e., (a) untreated etched dentin, (b) application of the Er, Cr:YSGG laser and (c) use of chlorhexidine as an adjunct in the bonding process. Restorations were fabricated with Z350 XT FiltekTM composite resin (3M ESPE) and subsequently the specimens were subjected to thermocycling to simulate artificial ageing. Quantitative analysis of external adaptation was performed by scanning electron microscopy in both healthy and affected dentin using epoxy resin replicas. It was concluded that the application of laser and chlorhexidine did not affect the percentages of marginal adaptation of class V restorations. Furthermore, thermocycling may influence adaptation values.
Resumo:
The Mineral Trioxide Aggregate (MTA) has excellent biological property. However, its consistency makes it difficult to be inserted into retrograde cavities. Objective:To evaluate the ability of different methods to fill retrograde cavities with MTA. Material and methods: Root canals of thirty single-rooted resin teeth were prepared and filled. After the cut of 3 mm short of apical third, retrograde cavities with 3 mm deep were prepared using an ultrasound device and retrotips (CVD, São José dos Campos, SP, Brazil). The retrograde preparation was evaluate by using an operative microscope (D.F. Vasconcellos, São Paulo, SP, Brazil). The teeth were randomly divided into three groups (n = 10), according to the method: 1) condenser (Trinity, São Paulo, SP, Brazil); 2) MTA applicator (Angelus, Londrina, Brazil) + condenser; 3) condenser associated with ultrasound (CVD, São José dos Campos, SP, Brazil). After the filling of retrograde cavities with white MTA (Angelus, Londrina, Brazil), teeth were radiographed using a digital system (Kodak RVG 6000, Rochester, NY, USA). The images were analyzed by UTHSCSA Image Tool 3.0 software. The percentage of filling was calculated by the proportion between the total area of retrograde cavity and the filled area. The radiographic density mean of each third of retrograde cavity filled with MTA was measured by using the histogram tool of the software. The results were submitted to ANOVA and Tukey tests, with 5% of significance. Results: There was no difference in percentage of filling among the groups (p > 0.05) (approximately 85%). By comparing the thirds, the condenser and MTA applicator groups showed higher density for apical and middle third than cervical third (p < 0.05). The ultrasound group presented similar density among the thirds. Conclusion: The filling ability was similar for the studied methods. Ultrasound promoted better distribution of MTA in retrograde cavity, but did not increase the density of material.
Resumo:
It is shown that the generation of cavities in a liquid can produce usable work, which is illustrated by the stretching of a string. This work is done during the expansion of the cavity, and not with its collapse. Basic equations are presented for the movement of a device moved by the so called cavity events. A theoretical solution is also proposed, which uses polynomial functions relating the so called "excess of pressure" in the cavity and time. Evaluations of the force generated during the expansion of the cavity showed a mean peak value of about 58 N for the moving container, while measurements with the container fixed to a support showed a peak value of 476 N, considered somewhat overestimated, because high frequency oscillations seem to superpose the mean behavior. Simultaneous phenomena occurring during the cavity events are also described. Series of pictures of the experiments are presented.
Resumo:
At present, solid thin films are recognized by their well established and mature processing technology that is able to produce components which, depending on their main characteristics, can perform either passive or active functions. Additionally, Si-based materials in the form of thin films perfectly match the concept of miniaturized and low-consumption devices-as required in various modern technological applications. Part of these aspects was considered in the present work that was concerned with the study of optical micro-cavities entirely based on silicon and silicon nitride thin films. The structures were prepared by the sputtering deposition method which, due to the adopted conditions (atmosphere and deposition rate) and arrangement of layers, provided cavities operating either in the visible (at ~ 670 nm) or in the near-infrared (at ~ 1560 nm) wavelength ranges. The main differential of the work relies on the construction of optical microcavities with a reduced number of periods whose main properties can be changed by thermal annealing treatments. The work also discusses the angle-dependent behavior of the optical transmission profiles as well as the use of the COMSOL software package to simulate the microcavities.
Resumo:
The velocity and mixing field of two turbulent jets configurations have been experimentally characterized by means of cold- and hot-wire anemometry in order to investigate the effects of the initial conditions on the flow development. In particular, experiments have been focused on the effect of the separation wall between the two streams on the flow field. The results of the experiments have pointed out that the wake behind a thick wall separating wall has a strong influence on the flow field evolution. For instance, for nearly unitary velocity ratios, a clear vortex shedding from the wall is observable. This phenomenon enhances the mixing between the inner and outer shear layer. This enhancement in the fluctuating activity is a consequence of a local absolute instability of the flow which, for a small range of velocity ratios, behaves as an hydrodynamic oscillator with no sensibility to external perturbations. It has been suggested indeed that this absolute instability can be used as a passive method to control the flow evolution. Finally, acoustic excitation has been applied to the near field in order to verify whether or not the observed vortex shedding behind the separating wall is due to a global oscillating mode as predicted by the theory. A new scaling relationship has been also proposed to determine the preferred frequency for nearly unitary velocity ratios. The proposed law takes into account both the Reynolds number and the velocity ratio dependence of this frequency and, therefore, improves all the previously proposed relationships.
Resumo:
In the framework of developing defect-based life models, in which breakdown is explicitly associated with partial discharge (PD)-induced damage growth from a defect, ageing tests and PD measurements were carried out in the lab on polyethylene (PE) layered specimens containing artificial cavities. PD activity was monitored continuously during aging. A quasi-deterministic series of stages can be observed in the behavior of the main PD parameters (i.e. discharge repetition rate and amplitude). Phase-resolved PD patterns at various ageing stages were reproduced by numerical simulation which is based on a physical discharge model devoid of adaptive parameters. The evolution of the simulation parameters provides insight into the physical-chemical changes taking place at the dielectric/cavity interface during the aging process. PD activity shows similar time behavior under constant cavity gas volume and constant cavity gas pressure conditions, suggesting that the variation of PD parameters may not be attributed to the variation of the gas pressure. Brownish PD byproducts, consisting of oxygen containing moieties, and degradation pits were found at the dielectric/cavity interface. It is speculated that the change of PD activity is related to the composition of the cavity gas, as well as to the properties of dielectric/cavity interface.
Resumo:
The work presented in this thesis is focused on the open-ended coaxial-probe frequency-domain reflectometry technique for complex permittivity measurement at microwave frequencies of dispersive dielectric multilayer materials. An effective dielectric model is introduced and validated to extend the applicability of this technique to multilayer materials in on-line system context. In addition, the thesis presents: 1) a numerical study regarding the imperfectness of the contact at the probe-material interface, 2) a review of the available models and techniques, 3) a new classification of the extraction schemes with guidelines on how they can be used to improve the overall performance of the probe according to the problem requirements.
Resumo:
We investigate experimentally the transmission properties of single sub-wavelength coaxial apertures in thin metal films (t = 110 nm). Enhanced transmission through a single sub-wavelength coaxial aperture illuminated with a strongly focused radially polarized light beam is reported. In our experiments we achieved up to four times enhanced transmission through a single coaxial aperture as compared to a (hollow) circular aperture with the same outer diameter.We attribute this enhancement of transmission to the excitation of a TEM-mode for illumination with radially polarized light inside the single coaxial aperture. A strong polarization contrast is observed between the transmission for radially and azimuthally polarized illumination. Furthermore, the observed transmission through a single coaxial aperture can be strongly reduced if surface plasmons are excited. The experimental results are in good agreement with finite difference time domain (FDTD) simulations.