954 resultados para Coal combustion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model of a large coal-fired fluidized bed boiler for power generation is synthesised. The effect of variations in the main parameters of the model on variables such as the background carbon concentrations in the bed, and the transient response of heat evolution are studied. The mechanisms of solids mixing within the bed, combustion and the flow of heat to the boiler tubes are shown to result in a characteristic dynamic response, knowledge of which is essential for the proper control and regulation of a practical system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant’s ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator.

In order to perform the assessment from the perspective of the facility owners (e.g., electric power utilities, independent power producers), an optimal design and operating strategy of the hybrid system is determined for both the amine storage and partial capture configurations. A linear optimization model is developed to determine the optimal component sizes for the hybrid system and capture rates while meeting constraints on annual average emission targets of CO2, and variability of the combined power output. Results indicate that there are economic benefits of flexible operation relative to conventional CCS, and demonstrate that the hybrid system could operate as an energy storage system: providing an effective pathway for wind power integration as well as a mechanism to mute the variability of intermittent wind power.

In order to assess the performance of the hybrid system from the perspective of the system operator, a modified Unit Commitment/ Economic Dispatch model is built to consider and represent the techno-economic aspects of operation of the hybrid system within a power grid. The hybrid system is found to be effective in helping the power system meet an average CO2 emissions limit equivalent to the CO2 emission rate of a state-of-the-art natural gas plant, and to reduce power system operation costs and number of instances and magnitude of energy and reserve scarcity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.