872 resultados para Coactivation of muscles


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The process of learning to play a musical instrument necessarily alters the functional organisation of the cortical motor areas that are involved in generating the required movements. In the case of the harp, the demands placed on the motor system are quite specific. During performance, all digits with the sole exception of the little finger are used to pluck the strings. With a view to elucidating the impact of having acquired this highly specialized musical skill on the characteristics of corticospinal projections to the intrinsic hand muscles, focal transcranial magnetic stimulation (TMS) was used to elicit motor evoked potentials (MEPs) in three muscles (of the left hand): abductor pollicis brevis (APB); first dorsal interosseous (FDI); and abductor digiti minimi (ADM) in seven harpists. Seven non-musicians served as controls. With respect to the FDI muscle–which moves the index finger, the harpists exhibited reliably larger MEP amplitudes than those in the control group. In contrast, MEPs evoked in the ADM muscle–which activates the little finger, were smaller in the harpists than in the non-musicians. The locations on the scalp over which magnetic stimulation elicited discriminable responses in ADM also differed between the harpists and the non-musicians. This specific pattern of variation in the excitability of corticospinal projections to these intrinsic hand muscles exhibited by harpists is in accordance with the idiosyncratic functional demands that are imposed in playing this instrument.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We used1H-magnetic resonance spectroscopy to noninvasively determine total creatine (TCr), choline-containing compounds (Cho), and intracellular (IT) and extracellular (between-muscle fibers) triglycerides (ET) in three human skeletal muscles. Subjects' (n = 15 men) TCr concentrations in soleus [Sol; 100.2 ± 8.3 (SE) mmol/kg dry wt] were lower (P < 0.05) than those in gastrocnemius (Gast; 125.3 ± 9.2 mmol/kg dry wt) and tibialis anterior (TA; 123.7 ± 8.8 mmol/kg dry wt). The Cho levels in Sol (35.8 ± 3.6 mmol/kg dry wt) and Gast (28.5 ± 3.5 mmol/kg dry wt) were higher (P < 0.001 andP < 0.01, respectively) compared with TA (13.6 ± 2.4 mmol/kg dry wt). The IT values were found to be 44.8 ± 4.6 and 36.5 ± 4.2 mmol/kg dry wt in Sol and Gast, respectively. The IT values of TA (24.5 ± 4.5 mmol/kg dry wt) were lower than those of Sol (P < 0.01) and Gast (P < 0.05). There were no differences in ET [116.0 ± 11.2 (Sol), 119.1 ± 18.5 (Gast), and 91.4 ± 19.2 mmol/kg dry wt (TA)]. It is proposed that the differences in metabolite levels may be due to the differences in fiber-type composition and deposition of metabolites due to the adaptation of different muscles during locomotion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regulatory light chain (RLC) phosphorylation in fast twitch muscle is catalyzed by skeletal myosin light chain kinase (skMLCK), a reaction known to increase muscle force, work, and power. The purpose of this study was to explore the contribution of RLC phosphorylation on the power of mouse fast muscle during high frequency (100 Hz) concentric contractions. To determine peak power shortening ramps (1.05 to 0.90 Lo) were applied to Wildtype (WT) and skMLCK knockout (skMLCK-/-) EDL muscles at a range of shortening velocities between 0.05-0.65 of maximal shortening velocity (Vmax), before and after a conditioning stimulus (CS). As a result, mean power was increased to 1.28 ± 0.05 and 1.11 ± .05 of pre-CS values, when collapsed for shortening velocity in WT and skMLCK-/-, respectively (n = 10). In addition, fitting each data set to a second order polynomial revealed that WT mice had significantly higher peak power output (27.67 ± 1.12 W/ kg-1) than skMLCK-/- (25.97 ± 1.02 W/ kg-1), (p < .05). No significant differences in optimal velocity for peak power were found between conditions and genotypes (p > .05). Analysis with Urea Glycerol PAGE determined that RLC phosphate content had been elevated in WT muscles from 8 to 63 % while minimal changes were observed in skMLCK-/- muscles: 3 and 8 %, respectively. Therefore, the lack of stimulation induced increase in RLC phosphate content resulted in a ~40 % smaller enhancement of mean power in skMLCK-/-. The increase in power output in WT mice suggests that RLC phosphorylation is a major potentiating component required for achieving peak muscle performance during brief high frequency concentric contractions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chez les personnes post-AVC (Accident Vasculaire Cérébral), spasticité, faiblesse et toute autre coactivation anormale proviennent de limitations dans la régulation de la gamme des seuils des réflexes d'étirement. Nous avons voulu savoir si les déficits dans les influences corticospinales résiduelles contribuaient à la limitation de la gamme des seuils et au développement de la spasticité chez les patients post-AVC. La stimulation magnétique transcranienne (SMT) a été appliquée à un site du cortex moteur où se trouvent les motoneurones agissant sur les fléchisseurs et extenseurs du coude. Des potentiels évoqués moteurs (PEM) ont été enregistrés en position de flexion et d'extension du coude. Afin d'exclure l'influence provenant de l'excitabilité motoneuronale sur l'évaluation des influences corticospinales, les PEM ont été suscités lors de la période silencieuse des signaux électromyographiques (EMG) correspondant à un bref raccourcissement musculaire juste avant l'enclenchement de la SMT. Chez les sujets contrôles, il y avait un patron réciproque d'influences corticospinales (PEM supérieurs en position d'extension dans les extenseurs et vice-versa pour les fléchisseurs). Quant à la plupart des sujets post-AVC ayant un niveau clinique élevé de spasticité, la facilitation corticospinale dans les motoneurones des fléchisseurs et extenseurs était supérieure en position de flexion (patron de co-facilitation). Les résultats démontrent que la spasticité est associée à des changements substantiels des influences corticospinales sur les motoneurones des fléchisseurs et des extenseurs du coude.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the investigation who gave as result this work was to investigate the effectiveness of kinaesthetic motor imagery in the activation of the hemiplegic hand muscles following stroke. The experiment consisted of two random groups. Movements were measured after treatment. The participants were ten patients with hemiplegic hands (men who mean age was 74.4 years; mean time since stroke 3.05 months). All patients received three sessions of physical treatment based on an identical treatment protocol. Five patients were randomly assigned to an experimental group practising kinaesthetic motor imagery of a grasp using the 'lumbrical action' (experimental group). The others five (control group) followed a relaxation script. All the patients were then asked to grasp an object using the 'lumbrical action'. The grasps were recorded using an optoelectronic motion capture system. The magnitude of the extension of the index finger and the correlation of the angular displacement of the proximal phalangeal joints and the metacarpophalangeal joints were calculated. The movement time for the whole grip was calculated. The experimental group demonstrated higher extension in the index finger (p = < 0.01) and they had a higher correlation coefficient (0.99) than the control group (0.77) for the displacement of the proximal interphalangeal joint and the metacarpophalangeal joints. The movement time for the experimental group was faster, although the difference was not significant.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical compositions and physical properties of mixed-sex Thai indigenous (Gallus domesticus) and broiler (commercial breed, CP707) chicken biceps femoris and pectoralis muscles were determined. Indigenous chicken muscles contained higher protein contents but lower fat and ash contents compared to broiler muscles (P < 0.001). The amino acid profile of the indigenous chicken muscles was similar to that of the broiler muscles except they were slightly richer in glutamic acid (P < 0.05). The indigenous chicken muscles contained more saturated and less polyunsaturated fatty acids than the broiler muscles. There were no differences in the monounsaturated fatty acid contents between the breeds. The total collagen contents of indigenous pectoralis and biceps femoris muscles were 5.09 and 12.85 mg/g, respectively, which were higher than those found in broiler pectoralis (3.86 mg/g) and biceps femoris muscles (8.70 mg/g) (P < 0.001). Soluble collagen contents were lower for indigenous pectoralis and biceps femoris muscles, 22.16 vs. 31.38% and 26.06 vs. 33.87%, respectively. The CIE system values of lightness (L*), redness (a*), and yellowness (b*) of indigenous chicken muscles were higher than those of broiler muscles. The shear values of indigenous chicken muscles either raw or cooked were higher than those of broiler muscles (P < 0.05). After cooking, the shear values decreased for broiler biceps femoris and pectoralis muscles (P < 0.05), whereas no change was observed for indigenous chicken biceps femoris muscle (P > 0.05). Shear values increased for indigenous chicken pectoralis muscle (P < 0.05).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructure and thermal characteristics of Thai indigenous (Gallus domesticus) and broiler chicken (commercial line CP707) biceps femoris and pectoralis muscles were determined. Perimysium thicknesses were 14.2 mum for biceps femoris muscle and 7.10 mum for pectoralis muscle of indigenous chicken muscles, thicker than those of broiler muscles, which were 9.93 mum for biceps femoris muscle and 3.87 mum for pectoralis muscle (P < 0.05). Five endothermic peaks with peak transition temperatures (T-p) of 54.9, 61.7, 65.4, 70.6, and 76.1degreesC were obtained for broiler pectoralis muscle, whereas only 3 endothermic peaks (T-P of 56.6, 62.6, and 74.9degreesC were obtained for broiler biceps femoris muscle. Thai indigenous biceps femoris and pectoralis muscles had endothermic peaks with T-P ranges of 53.5 to 54.8, 60.7 to 61.9, and 75.9 to 76.9degreesC. The fiber diameters of Thai indigenous chicken muscles were greater (P < 0.05) than those of the broiler, 31.7 vs. 20.4 mum for biceps femoris muscle and 28.9 vs. 26.6 pm for pectoralis muscle, respectively. After cooking at 80degreesC for 10 min, the fiber diameter of indigenous chicken muscles significantly decreased while those of the broiler significantly increased. The mean of sarcomere lengths of the raw muscles ranged from 1.56 to 1.64 mun and decreased to 0.92 to 1.32 mum (P < 0.001) for broiler muscles and 1.22 to 1.35 mum (P < 0.001) for indigenous chicken muscles after cooking. The perimysium and endomysium of broiler muscles melted after cooking at 80degreesC, however, only slight disintegration was observed in these tissues in the indigenous chicken muscles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The spectral content of the myoelectric signals from the muscles of the remnant forearms of three persons with congenital absences (CA) of their forearms was compared with signals from their intact contra-lateral limbs, similar muscles in three persons with acquired losses (AL) and seven persons without absences [no loss (NL)]. The observed bandwidth for the CA subjects was broader with peak energy between 200 and 300 Hz. While the signals from the contra-lateral limbs and the AL and NL subjects was in the 100-150 Hz range: The mean skew of the signals from the AL subjects was 46.3 +/- 6.7 and those with NL of 45.4 +/- 8.7, while the signals from those with CAs had a skew of 11.0 +/- 11. The structure of the muscles of one CA subject was observed ultrasonically. The muscle showed greater disruption than normally developed muscles. It is speculated that the myographic signal reflects the structure of the muscle. which has developed in a more disorganized manner as a result of the muscle not being stretched by other muscles across the missing distal joint, even in the muscles that are used regularly to control arm prostheses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to show the feasibility of the use of functional electrical stimulation (FES) applied to the lower back muscles for pressure sores prevention in paraplegia. The hypothesis under study is that FES induces a change in the pressure distribution on the contact area during sitting. Tests were conducted on a paraplegic subject (T5), sitting on a standard wheelchair and cushion. Trunk extensors (mainly the erector spinae) were stimulated using surface electrodes placed on the skin. A pressure mapping system was used to measure the pressure on the sitting surface in four situations: (a) no stimulation; (b) stimulation on one side of the spine only; (c) stimulation on both sides, at different levels; and (d) stimulation at the same level on both sides, during pressure-relief manoeuvres. A session of prolonged stimulation was also conducted. The experimental results show that the stimulation of the erector spinae on one side of the spine can induce a trunk rotation on the sagittal plane, which causes a change in the pressure distribution. A decrease of pressure on the side opposite to the stimulation was recorded. The phenomenon is intensified when different levels of stimulation are applied to the two sides, and such change can be sustained for a considerable time (around 5 minutes). The stimulation did not induce changes during pressure-relief manoeuvres. Finally, from this research we can conclude that the stimulation of the trunk extensors can be a useful tool for pressure sores prevention, and can potentially be used in a routine for pressure sores prevention based on periodical weight shifts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-Hz frequency with pulses of 0.1 ms (voltage 24 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon. Muscle Nerve 40: 838-846, 2009

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim. To verify the muscular force and resistance to the movement of the flexor and extensor muscles of the knee of patients with spasticity after treatment with neuromuscular electrical stimulation (NMES) and isotonic exercises. Patients and methods. The patients this study were divided into group I (NMES) and group 2 (isotonic exercises). Their muscular torque and resistance to the movement of the flexor and extensor knee muscles were measured by the isokinetic dynamometer and the degree of spasticity by the modified Ashworth scale before and after ten sessions. Results. Alterations in the scores of the modified Ashworth scale were not observed. An increase in the flexor torque in group 1 (p = 0.041) and in group 2 (p = 0.001) was verified. In the passive mode, group 1 presented a reduction of resistance to the flexion movement (p = 0.026), while in group 2, a reduction of resistance to both the flexion (p = 0,029) and extension movements (p = 0.019) was verified. Conclusions. The two therapeutical resources had their efficiency proven only for the increase of the force of the flexor muscles. The resistance to movement, the isotonic exercises were more effective because they promoted a reduction in the resistance of the flexor and extensor knee muscles.