985 resultados para Co-59 Nmr
Resumo:
The aim of this study was to use the transformation of anionic to metathesis polymerization to produce block co-polymers of styrene-b-pentenylene using WC16 /PStLi and WC16/PStLi/ AlEtC12 catalyst systems. Analysis of the products using SEC and 1H and 13C NMR spectroscopy enabled mechanisms for metathesis initiation reactions to be proposed. The initial work involved preparation of the constituent homo-polymers. Solutions of polystyryllithium in cyclohexane were prepared and diluted so that the [PStLi]o<2x10-3M. The dilution produced initial rapid decay of the active species, followed by slower spontaneous decay within a period of days. This was investigated using UV / visible spectrophotometry and the wavelength of maximum absorbance of the PStLi was found to change with the decay from an initial value of 328mn. to λmax of approximately 340nm. after 4-7 days. SEC analysis of solutions of polystyrene, using RI and UV / visible (set at 254nm.) detectors; showed the UV:RI peak area was constant for a range of polystyrene samples of different moleculor weight. Samples of polypentenylene were prepared and analysed using SEC. Unexpectedly the solutions showed an absorbance at 254nm. which had to be considered when this technique was used subsequently to analyse polymer samples to determine their styrene/ pentenylene co-polymer composition. Cyclohexane was found to be a poor solvent for these ring-opening metathesis polymerizations of cyclopentene. Attempts to produce styrene-b-pentenylene block co-polymers, using a range of co-catalyst systems, were generally unsuccessful as the products were shown to be mainly homopolymers. The character of the polymers did suggest that several catalytic species are present in these systems and mechanisms have been suggested for the formation of initiating carbenes. Evidence of some low molecular weight product with co-polymer character has been obtained. Further investigation indicated that this is most likely to be ABA block copolymer, which led to a mechanism being proposed for the termination of the polymerization.
Resumo:
A novel metathesis catalyst for the polymerisation of acetylene has been developed. The polyacetylene produced by this new catalyst has been characterised by infra-red and NMR spectroscopy. The conductivity of the pristine material has been studied as a function of temperature, pressure and frequency. The effect on the conductivity of doping the material has also been investigated. The new metathesis catalyst has been incorporated into an anionic-to-metathesis transformation reaction. This novel reaction has been used to prepare samples of poly(styrene-co-acetylene). The copolymer has been characterised using U.V./Visible, NMR, infra-red spectroscopy and the surface morphology looked at using scanning electron microscopy. GPC was also used to give some idea of the molecular weights of the materials prepared. The conductivity of the copolymer has been studied as a function of temperature, pressure and frequency. The effect of doping on the conductivity the material has also been investigated. The conductivity results obtained from both materials have been used to try and gain an insight into the mechanism of the conduction processes occurring within the materials. An attempt has also been made to synthesise polyacetylene oligomers (polyenes) by modifying the Ziegler/Natta type catalysts commonly used to synthesise polyacetylene. The polyenes were characterised using U.V./Visible and infra-red spectroscopy together with GPC and GCMS.
Resumo:
This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, a-chymotrypsin (a-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-?-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. a-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w(1)/o/w(2)) utilizing chloroform (CHF) as the organic solvent, l-leucine as a dispersibility enhancer and an internal aqueous phase (w(1)) containing PEG4500 or Pluronic(®) F-68 (PLF68). a-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by (1)H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation a-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08±3.91%), loading (22.31±4.34µg/mg), FPF (fine particle fraction) (37.63±0.97%); FPD (fine particle dose) (179.88±9.43µg), MMAD (mass median aerodynamic diameter) (2.95±1.61µm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44±3.11%), loading (19.31±3.27µg/mg) and activity (81.9±2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases.
Resumo:
Diffusion-ordered spectroscopy (DOSY) is a powerful technique for mixture analysis, but in its basic form it cannot separate the component spectra for species with very similar diffusion coefficients. It has been recently demonstrated that the component spectra of a mixture of isomers with nearly identical diffusion coefficients (the three dihydroxybenzenes) can be resolved using matrix-assisted DOSY (MAD), in which diffusion is perturbed by the addition of a co-solute such as a surfactant [R. Evans, S. Haiber, M. Nilsson, G. A. Morris, Anal. Chem. 2009, 81, 4548-4550]. However, little is known about the conditions required for such a separation, for example, the concentrations and concentration ratios of surfactant and solutes. The aim of this study was to explore the concentration range over whichmatrix-assisted DOSY using the surfactant SDS can achieve diffusion resolution of a simple model set of isomers, the monomethoxyphenols. The results show that the separation is remarkably robust with respect to both the concentrations and the concentration ratios of surfactant and solutes, supporting the idea that MAD may become a valuable tool formixture analysis. © 2010 John Wiley & Sons, Ltd.
Resumo:
Appealingly simple: A new method is described that allows the diffusion coefficient of a small molecule to be estimated given only the molecular weight and the viscosity of the solvent used. This method makes possible the quantitative interpretation of the diffusion domain of diffusion-ordered NMR spectra (see picture). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Considers if and how a beneficial joint tenancy arising under the presumption of joint beneficial entitlement following the Supreme Court rulings in Stack v Dowden and Jones v Kernott can come to be severed.
Resumo:
Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.
Resumo:
Reactive surface of mesoporous nanocrystalline silicon was used to synthesise noble metal nanoparticles via in situ reduction of the precursor salt solutions. The synthetic methodology for metal nanoparticle formation was systematically developed, and reaction conditions of metal salts reduction were optimised to prepare nanoparticles of controlled size distribution in the order 5–10 nm inside the mesoporous silicon template. CO oxidation was used as a test reaction for the synthesised Pt/porous silicon catalysts. Sharp reaction light-off was observed at about 120 °C on the optimised catalysts. The catalysts were shown to be stable in the extended steady-state runs and in the catalysts re-use experiments. Metal nanoparticles were shown to be stable to sintering at elevated temperatures up to 1000 °C. However, after thermal treatment on air, Pt nanoparticles were covered by a SiOx layer and were less active in CO oxidation.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Nanoparticles are importante for the study of new phenomena and for the development of new applications. Metallic magnetic nanoparticles like Cobalt and Nickel are important for their applications in nanoscience and nanotechnology. In this work, we report on the synthesis and characterization of Ni and Co nanoparticles. The nanoparticles were prepared by the modi- ed sol-gel method and were formed in the pore-network of the biopolymer quitosan. The reduction occurred in absence of H2 ux. The metallic particles and their monoxides have a face-centered- cubic structure. The metallic particles sizes ranged from 59 to 77 nm and from 19 to 50 nm for Ni and Co, respectively. Their monoxides chemically passivated the metallic cores, and after several weeks we have not observed further increase in oxidation. The synthesis method was tuned to obtain mainly the ferromagnetic phase. The system behaves like a core/shell structure with a ferromagnetic core and an antiferromagnetic shell. Exchange bias e ect was observed at temperatures below the Néel temperature. Both systems were submitted to an alternated magnetic eld and the heat released by the particles increased the temperature to 140°C in an interval of 5 min. Similar studies in samples dispersed in water increased the temperatures to 40-59°C, these results suggest that these materials are candidates for magnetic hyperthermia.
Resumo:
Legs 59 and 60 of the International Phase of Oceanic Drilling (IPOD) were designed to study the nature and history of volcanism of the active Mariana arc, its currently spreading inter-arc basin (the Mariana Trough), and the series of inactive basins and intervening ridges that lie to the west. The older basins and ridges were drilled during Leg 59 as the first part of a transect of single-bit holes drilled in each major basin and ridge. The eastern part of the transect - the technically active region - was drilled during Leg 60. The evolution of island-arc volcanos and magma genesis associated with lithospheric subduction remain some of the most complex petrologic problems confronting us. Many types of source material (mantle, oceanic crust, continental crust) and an unusually wide range of possible physical conditions at the time of magma genesis must be identified even before the roles of partial melting and subsequent magma fractionation, mixing, and contamination can be assessed.
Resumo:
Current treatment strategies for the treatment of brain tumor have been hindered primarily by the presence of highly lipophilic insurmountable blood-brain barrier (BBB). The purpose of current research was to investigate the efficiency of engineered biocompatible polymeric nanoparticles (NPs) as drug delivery vehicle to bypass the BBB and enhance biopharmaceutical attributes of anti-metabolite methotrexate (MTX) encapsulated NPs. The NPs were prepared by solvent diffusion method using cationic bovine serum albumin (CBA), and characterized for physicochemical parameters such as particle size, polydispersity index, and zeta-potential; while the surface modification was confirmed by FTIR, and NMR spectroscopy. Developed NPs exhibited zestful relocation of FITC tagged NPs across BBB in albino rats. Further, hemolytic studies confirmed them to be non-toxic and biocompatible as compared to free MTX. In vitro cytotoxicity assay of our engineered NPs on HNGC1 tumor cells proved superior uptake in tumor cells; and elicited potent cytotoxic effect as compared to plain NPs and free MTX solution. The outcomes of the study evidently indicate the prospective of CBA conjugated poly (D,L-lactide-co-glycolide) (PLGA) NPs loaded with MTX in brain cancer bomber with amplified capability to circumvent BBB.
Resumo:
Ruthenium complexes have proved to exhibit antineoplastic activity related to the interaction of metal ion with DNA nucleobases. It is indeed of great interest to provide new insights on theses cutting-edge studies, such as the identification of distinct coordinative modes of DNA binding sites. During the investigation on the reaction between [(PPh3)3Ru(CO)(H)2], 1, and the Thymine Acetic Acid (THA) as model for nucleobases, we identified an unstable monohapto hydride acetate complex 2, which rapidly evolves into elusive intermediates whose nature was evidenced by NMR spectra and DFT calculations. We obtained crystals of [(PPh3)2Ru(CO)(k1-THA)(k2-THA)] 17, and [Ru(CO)(PPh3)2(k2-N,O)-[THA(A)];(k1-O)[THA(B)]2 18, phosphine ligands assuming cis conformation. The thesis deals on the analogue reactions of 1 with acetic acid by varying different parameters and operating conditions. The reaction yields to the hydride dihapto-acetate [(PPh3)2RuH(CO)(k2-Ac)] 8 through the related meridian monohapto, by releasing of phosphine ligand. However, the reaction yields a mixture of compounds, in which the dihapto hydride complex 8 is prevailing in any cases and does not provide any disclosure for the proposed mechanistic aspects. The reaction with two equivalents of acetic acid, affords the complex [(PPh3)2Ru(CO)(k1-Ac)(k2-Ac)] 11, exhibiting mutual trans:cis locations in 2:1 ratio for the phosphine. Such evidence agrees with the results obtained DFT calculations in vacuo, whereas it is in contrast with those obtained with the THA. Therefore we can inferred that the products obtained from the latter reaction is intermolecularly ruled by the hydrogen binding interactions between the functions [-NH•••(O)C-] in the two coordinated thymine ligands.
Resumo:
A multistate molecular dyad containing flavylium and viologen units was synthesized and the pH dependent thermodynamics of the network completely characterized by a variety of spectroscopic techniques such as NMR, UV-vis and stopped-flow. The flavylium cation is only stable at acidic pH values. Above pH ≈ 5 the hydration of the flavylium leads to the formation of the hemiketal followed by ring-opening tautomerization to give the cis-chalcone. Finally, this last species isomerizes to give the trans-chalcone. For the present system only the flavylium cation and the trans-chalcone species could be detected as being thermodynamically stable. The hemiketal and the cis-chalcone are kinetic intermediates with negligible concentrations at the equilibrium. All stable species of the network were found to form 1 : 1 and 2 : 1 host : guest complexes with cucurbit[7]uril (CB7) with association constants in the ranges 10(5)-10(8) M(-1) and 10(3)-10(4) M(-1), respectively. The 1 : 1 complexes were particularly interesting to devise pH responsive bistable pseudorotaxanes: at basic pH values (≈12) the flavylium cation interconverts into the deprotonated trans-chalcone in a few minutes and under these conditions the CB7 wheel was found to be located around the viologen unit. A decrease in pH to values around 1 regenerates the flavylium cation in seconds and the macrocycle is translocated to the middle of the axle. On the other hand, if the pH is decreased to 6, the deprotonated trans-chalcone is neutralized to give a metastable species that evolves to the thermodynamically stable flavylium cation in ca. 20 hours. By taking advantage of the pH-dependent kinetics of the trans-chalcone/flavylium interconversion, spatiotemporal control of the molecular organization in pseudorotaxane systems can be achieved.