883 resultados para Cluster Computer
Resumo:
Nine cases of melioidosis with four deaths occurred over a 28-month period in members of a small remote Aboriginal community in the top end of the Northern Territory of Australia. Typing by pulsed-field gel electrophoresis showed isolates of Burkholderia pseudomallei from six of the cases to be clonal and also identical to an isolate from the community water supply, but not to soil isolates. The clonality of the isolates found in this cluster contrasts with the marked genetic diversity of human and environmental isolates found in this region which is hyperendemic for B. pseudomallei. It is possible that the clonal bacteria persisted and were propagated in biofilm in the water supply system. While the exact mode of transmission to humans and the reasons for cessation of the outbreak remain uncertain, contamination of the unchlorinated community water supply is a likely explanation.
Resumo:
As the use of technological devices in everyday environments becomes more prevalent, it is clear that access to these devices has become an important aspect of occupational performance. Children are increasingly required to competently manipulate technology such as the computer to fulfil occupational roles of student and player. Occupational therapists are in a position to facilitate the successful interface between children and standard computer technologies. The literature has supported the use of direct manipulation interfaces in computing that requires mastery of devices such as the mouse. Identification of children likely to experience difficulties with mouse use will inform the development of appropriate methods of intervention promoting mouse skill and further enhance participation in occupational tasks. The aim of this paper is to discuss the development of an assessment of mouse proficiency for children. It describes the construction of the assessment, the content of the test, and its content validity.
Resumo:
Motivation: This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. Results: The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets.
Resumo:
This paper outlines research on the processes taking place within the coal mineral matter at high temperatures and development of the relationship between ash fusion temperatures (AFT) and phase equilibria of the coal ash slags. A new thermodynamic database for the Al-Ca-Fe-O-Si system developed by the author was used in conjunction with the thermodynamic computer package F*A*C*T for these purposes. In addition, high temperature experimental studies were undertaken that involved heat treatment and quenching of the ash cones followed by the analyses using different techniques. The study provided new information on the processes taking place during AFT test and demonstrated the validity of the AFTs predictions with F*A*C*T. Examples of practical applications of the AFT prediction method are given in the paper. The results of this study are important not only for the AFT predictions, but also in general for the application of phase equilibrium science to the characterisation of the coal mineral matter interactions at high temperature. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study integrated the research streams of computer-mediated communication (CMC) and group conflict by comparing the expression of different types of conflict in CMC groups and face-to face (FTF) groups over time. The main aim of the study was to compare the cues-filtered-out approach against the social information processing theory A laboratory study was conducted with 39 groups (19 CMC and 20 FTF) in which members were required to work together over three sessions. The frequencies of task, process, and relationship conflict were analyzed. Findings supported the social information processing theory. There was more process and relationship conflict in CMC groups compared to FTF groups on Day 1. However, this difference disappeared on Days 2 and 3. There was no difference between CMC and FTF groups in the amount of task conflict expressed on any day.
Resumo:
Computer Science is a subject which has difficulty in marketing itself. Further, pinning down a standard curriculum is difficult-there are many preferences which are hard to accommodate. This paper argues the case that part of the problem is the fact that, unlike more established disciplines, the subject does not clearly distinguish the study of principles from the study of artifacts. This point was raised in Curriculum 2001 discussions, and debate needs to start in good time for the next curriculum standard. This paper provides a starting point for debate, by outlining a process by which principles and artifacts may be separated, and presents a sample curriculum to illustrate the possibilities. This sample curriculum has some positive points, though these positive points are incidental to the need to start debating the issue. Other models, with a less rigorous ordering of principles before artifacts, would still gain from making it clearer whether a specific concept was fundamental, or a property of a specific technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
The Test of Mouse Proficiency (TOMP) was developed to assist occupational therapists and education professionals assess computer mouse competency skills in children from preschool to upper primary (elementary) school age. The preliminary reliability and validity of TOMP are reported in this paper. Methods used to examine the internal consistency, test-retest reliability, and criterion- and construct-related validity of the test are elaborated. In the continuing process of test refinement, these preliminary studies support to varying degrees the reliability and validity of TOMP. Recommendations for further validation of the assessment are discussed along with indications for potential clinical application.
Resumo:
The article describes an attempt to improve student learning outcomes in a computer networks course by making lectures more active learning experiences. Quick quizzes, group and individual exercises, the review of student questions, as well as multiple breaks, were incorporated into the weekly three-hour lectures. Student responses to the modified lectures was overwhelmingly positive: over 85% of respondents agreed that the lectures aided understanding, with large majorities of the respondents finding the individual activities useful to their learning. Although student examination performance improved over the previous year, performance on an examination question that was designed to examine deep understanding remained unchanged.