816 resultados para Cloud OS, cloud operating system, cloud computing
Resumo:
Communication and portability are the two main problems facing the user. An operating system, called PORTOS, was developed to solve these problems for users on dedicated microcomputer systems. Firstly, an interface language was defined, according to the anticipated requirements and behaviour of its potential users. Secondly, the PORTOS operating system was developed as a processor for this language. The system is currently running on two minicomputers of highly different architectures. PORTOS achieves its portability through its high-level design, and implementation in CORAL66. The interface language consists of a set of user cotnmands and system responses. Although only a subset has been implemented, owing to time and manpower constraints, promising results were achieved regarding the usability of the language, and its portability.
Resumo:
Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática
Resumo:
Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.
Resumo:
Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational resources. Grid enables access to the resources but it does not guarantee any quality of service. Moreover, Grid does not provide performance isolation; job of one user can influence the performance of other user’s job. The other problem with Grid is that the users of Grid belong to scientific community and the jobs require specific and customized software environment. Providing the perfect environment to the user is very difficult in Grid for its dispersed and heterogeneous nature. Though, Cloud computing provide full customization and control, but there is no simple procedure available to submit user jobs as in Grid. The Grid computing can provide customized resources and performance to the user using virtualization. A virtual machine can join the Grid as an execution node. The virtual machine can also be submitted as a job with user jobs inside. Where the first method gives quality of service and performance isolation, the second method also provides customization and administration in addition. In this thesis, a solution is proposed to enable virtual machine reuse which will provide performance isolation with customization and administration. The same virtual machine can be used for several jobs. In the proposed solution customized virtual machines join the Grid pool on user request. Proposed solution describes two scenarios to achieve this goal. In first scenario, user submits their customized virtual machine as a job. The virtual machine joins the Grid pool when it is powered on. In the second scenario, user customized virtual machines are preconfigured in the execution system. These virtual machines join the Grid pool on user request. Condor and VMware server is used to deploy and test the scenarios. Condor supports virtual machine jobs. The scenario 1 is deployed using Condor VM universe. The second scenario uses VMware-VIX API for scripting powering on and powering off of the remote virtual machines. The experimental results shows that as scenario 2 does not need to transfer the virtual machine image, the virtual machine image becomes live on pool more faster. In scenario 1, the virtual machine runs as a condor job, so it easy to administrate the virtual machine. The only pitfall in scenario 1 is the network traffic.
Resumo:
Detall d'una implementació d'un sistema de computació al núvol a baixa escala i a nivell corporatiu.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.
Resumo:
Modern cloud-based applications and infrastructures may include resources and services (components) from multiple cloud providers, are heterogeneous by nature and require adjustment, composition and integration. The specific application requirements can be met with difficulty by the current static predefined cloud integration architectures and models. In this paper, we propose the Intercloud Operations and Management Framework (ICOMF) as part of the more general Intercloud Architecture Framework (ICAF) that provides a basis for building and operating a dynamically manageable multi-provider cloud ecosystem. The proposed ICOMF enables dynamic resource composition and decomposition, with a main focus on translating business models and objectives to cloud services ensembles. Our model is user-centric and focuses on the specific application execution requirements, by leveraging incubating virtualization techniques. From a cloud provider perspective, the ecosystem provides more insight into how to best customize the offerings of virtualized resources.
Resumo:
Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.