946 resultados para Clique irreducible graphs
Resumo:
This report describes research about flow graphs - labeled, directed, acyclic graphs which abstract representations used in a variety of Artificial Intelligence applications. Flow graphs may be derived from flow grammars much as strings may be derived from string grammars; this derivation process forms a useful model for the stepwise refinement processes used in programming and other engineering domains. The central result of this report is a parsing algorithm for flow graphs. Given a flow grammar and a flow graph, the algorithm determines whether the grammar generates the graph and, if so, finds all possible derivations for it. The author has implemented the algorithm in LISP. The intent of this report is to make flow-graph parsing available as an analytic tool for researchers in Artificial Intelligence. The report explores the intuitions behind the parsing algorithm, contains numerous, extensive examples of its behavior, and provides some guidance for those who wish to customize the algorithm to their own uses.
Resumo:
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.
Resumo:
In an n-way broadcast application each one of n overlay nodes wants to push its own distinct large data file to all other n-1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of receivers and thus, by necessity, employs an almost random overlay topology. n-way broadcast applications on the other hand, owing to their inherent n-squared nature, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a consequence deliver far superior performance compared to random and myopic (local) approaches. We present the Max-Min and MaxSum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using trace-driven simulation and measurements from a PlanetLab prototype implementation, we demonstrate that the performance of swarming on top of our constructed topologies is far superior to the performance of random and myopic overlays. Moreover, we show how to modify our swarming protocol to allow it to accommodate selfish nodes.
Resumo:
This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.
Resumo:
Large probabilistic graphs arise in various domains spanning from social networks to biological and communication networks. An important query in these graphs is the k nearest-neighbor query, which involves finding and reporting the k closest nodes to a specific node. This query assumes the existence of a measure of the "proximity" or the "distance" between any two nodes in the graph. To that end, we propose various novel distance functions that extend well known notions of classical graph theory, such as shortest paths and random walks. We argue that many meaningful distance functions are computationally intractable to compute exactly. Thus, in order to process nearest-neighbor queries, we resort to Monte Carlo sampling and exploit novel graph-transformation ideas and pruning opportunities. In our extensive experimental analysis, we explore the trade-offs of our approximation algorithms and demonstrate that they scale well on real-world probabilistic graphs with tens of millions of edges.
Resumo:
The combinatorial Dirichlet problem is formulated, and an algorithm for solving it is presented. This provides an effective method for interpolating missing data on weighted graphs of arbitrary connectivity. Image processing examples are shown, and the relation to anistropic diffusion is discussed.
Resumo:
Office of Naval Research (N00014-01-1-0624)
Resumo:
Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high-dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm.
Resumo:
A coloration is an exact regular coloration if whenever two vertices are colored the same they have identically colored neighborhoods. For example, if one of the two vertices that are colored the same is connected to three yellow vertices, two white and red, then the other vertex is as well. Exact regular colorations have been discussed informally in the social network literature. However they have been part of the mathematical literature for some time, though in a different format. We explore this concept in terms of social networks and illustrate some important results taken from the mathematical literature. In addition we show how the concept can be extended to ecological and perfect colorations, and discuss how the CATREGE algorithm can be extended to find the maximal exact regular coloration of a graph.
Resumo:
Graph partitioning divides a graph into several pieces by cutting edges. Very effective heuristic partitioning algorithms have been developed which run in real-time, but it is unknown how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. Distinctive features are the transmission and modification of whole subdomains (the partitioned units) that act as genes, and the use of a multilevel heuristic algorithm to effect the crossover and mutations. Its effectiveness is demonstrated by improvements on previously established benchmarks.
Resumo:
It is shown that every connected, locally connected graph with the maximum vertex degree Δ(G)=5 and the minimum vertex degree δ(G)3 is fully cycle extendable. For Δ(G)4, all connected, locally connected graphs, including infinite ones, are explicitly described. The Hamilton Cycle problem for locally connected graphs with Δ(G)7 is shown to be NP-complete
Resumo:
A weighted variant of Hall's condition for the existence of matchings is shown to be equivalent to the existence of a matching in a lexicographic product. This is used to introduce characterizations of those bipartite graphs whose edges may be replicated so as to yield semiregular multigraphs or, equivalently, semiregular edge-weightings. Such bipartite graphs will be called semiregularizable. Some infinite families of semiregularizable trees are described and all semiregularizable trees on at most 11 vertices are listed. Matrix analogues of some of the results are mentioned and are shown to imply some of the known characterizations of regularizable graphs.
Resumo:
We are discussing certain combinatorial and counting problems related to quadratic algebras. First we give examples which confirm the Anick conjecture on the minimal Hilbert series for algebras given by $n$ generators and $\frac {n(n-1)}{2}$ relations for $n \leq 7$. Then we investigate combinatorial structure of colored graph associated to relations of RIT algebra. Precise descriptions of graphs (maps) corresponding to algebras with maximal Hilbert series are given in certain cases. As a consequence it turns out, for example, that RIT algebra may have a maximal Hilbert series only if components of the graph associated to each color are pairwise 2-isomorphic.