991 resultados para Clinical pharmacology
Resumo:
Selective superoxide dismutase (SOD) mimetics are potentially useful in pathological conditions in which there is an overproduction of the superoxide anion O-2.(-). These pathological conditions include inflammation, ischemia/reperfusion, shock, various cardiovascular disorders, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. A major step forward in this field was the development of small-molecule selective SOD mimetics that penetrate cell membranes, These selective SOD mimetics catalytically remove O-2.(-) without interfering with nitric oxide (NO), peroxynitrite (ONOO-) or other radicals such as hydroxyl radical or hydrogen peroxide (H2O2). These selective SOD mimetics (SC-52608, SC-55858, M-40403 and M-40401) have been shown to have benefits in animal models of inflammation, ischemia/reperfusion, shock, thrombosis and diabetes. The next challenge with selective SOD mimetics is to develop therapeutic potential into therapeutic agents.
Resumo:
Both angiotensin-converting enzyme (ACE) inhibitors and AT-1 receptor antagonists reduce the effects of angiotensin II, however they may have different clinical effects. This is because the ACE inhibitors, but not the AT-1 receptor antagonists, increase the levels of substance P, bradykinin and tissue plasminogen activator. The AT-1 receptor antagonists, but not the ACE inhibitors, are capable of inhibiting the effects of angiotensin II produced by enzymes other than ACE. On the basis of the present clinical trial evidence, AT-1 receptor antagonists, rather than the ACE inhibitors, should be used to treat hypertension associated with left ventricular (LV) hypertrophy. Both groups of drugs are useful when hypertension is not complicated by LV hypertrophy, and in diabetes. In the treatment of diabetes with or without hypertension, there is good clinical support for the use of either an ACE inhibitor or an AT-1 receptor antagonist. ACE inhibitors are recommended in the treatment of renal disease that is not associated with diabetes, after myocardial infarction when left ventricular dysfunction is present, and in heart failure. As the incidence of cough is much lower with the AT-1 receptor antagonists, these can be substituted for ACE inhibitors in patients with hypertension or heart failure who have persistent cough. Preliminary studies suggest that combining an AT-1 receptor antagonist with an ACE inhibitor may be more effective than an ACE inhibitor alone in the treatment of hypertension, diabetes with hypertension, renal disease without diabetes and heart failure. However, further trials are required before combination therapy can be recommended in these conditions.
Resumo:
Clinical trials have established bosentan, an orally active non-selective endothelin (ET) receptor antagonist, as a beneficial treatment in pulmonary hypertension. Trials have also shown short-term benefits of bosentan in systemic hypertension and congestive heart failure. However, bosentan also increased plasma levels of ET-1, probably by inhibiting the clearance of ET-1 by endothelin type B (ET.) receptors, and this may mean its effectiveness is reduced with long-term clinical use. Preliminary data suggests that selective endothelin type A (ETA) receptor antagonists (BQ-123, sitaxsentan) may be more beneficial than the non-selective ET receptor antagonists in heart failure, especially when the failure is associated with pulmonary hypertension. Experimental evidence in animal disease models suggests that non-selective ET or selective ETA receptor antagonism may have a role in the treatment of athero-sclerosis, restenosis, myocarditis, shock and portal hypertension. In animal models of myocardial infarction and/or reperfusion injury, non-selective ET or selective ETA receptor antagonists have beneficial or detrimental effects depending on the conditions and agents used. Thus clinical trials of the nonselective ET or selective ETA receptor antagonists in these conditions are not presently warranted. Several selective endothelin-converting enzyme inhibitors tors have been synthesised recently, and these are only beginning to be tested in animal models of cardiovascular disease, and thus the clinical potential of these inhibitors is still to be defined.
Resumo:
The aim of the study was to investigate the role of glutamate residue 113 in transmembrane domain 2 of the human noradrenaline transporter in determining cell surface expression and functional activity. This residue is absolutely conserved in all members of the Na+- and Cl--dependent transporter family. Mutations to alanine (hE113A), aspartate (hE113D) and glutamine (hE113Q) were achieved by site-directed mutagenesis and the mutants were expressed in transfected COS-7 or HEK-293 cells. Cell surface expression of IIE113A and hE113D, but not hE113Q, was markedly reduced compared with wild type, and functional noradrenaline uptake was detected only for the hE113Q mutant. The pharmacological properties of the hE113Q mutant showed very little change compared with wild type, except for a decrease in V-max values for noradrenaline and dopamine uptake of 2-3-fold. However, the hE113D mutant showed very marked changes in its properties, compared with wild type, with 82-260-fold decreases in the affinities of the substrates, noradrenaline, dopamine and MPP+, and increased Na+ affinity for stimulation of nisoxetine binding. The results of the study show that the size and not the charge of the 113 glutamate residue of the noradrenaline transporter seems to be the most critical factor for maintenance of transporter function and surface expression.
Will chymase inhibitors be the next major development for the treatment of cardiovascular disorders?
Resumo:
Chymase is contained in the secretory granules of mast cells. In addition to the synthesis of angiotensin II, chymase is involved in transforming growth factor-beta activation and cleaves Type I procollagen to produce collagen. NK301 and BCEAB are orally-active inhibitors of chymase. NK301 was tested in a dog model of vascular intimal hyperplasia after balloon injury and shown to reduce the increased chymase activity in the injured arteries and prevent intimal thickening. In a hamster model of cardiac fibrosis associated with cardiomyopathy, BCEAB reduced the increased cardiac chymase activity in cardiomyopathy and reduced fibrosis. Chymase inhibitors may be an important development for the treatment of cardiovascular injury associated with mast cell degranulation.
Resumo:
The platelet inhibitory effects of the nitric oxide (NO) donor drug MAHMA NONOate ((Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino] diazen-1-ium-1,2-diolate) were examined in anaesthetised rats and compared with those of S-nitrosoglutathione (GSNO; an S-nitrosothiol). Bolus administration of the aggregating agent ADP dose-dependently reduced the number of circulating free platelets. Intravenous infusions of MAHMA NONOate (3-30 nmol/kg/min) dose-dependently inhibited the effect of 0.3 mumol/kg ADP. MAHMA NONOate was approximately 10-fold more potent than GSNO. MAHMA NONOate (0.3-10 nmol/kg/min) also reduced systemic artery pressure and was again 10-fold more potent than GSNO. Thus MAHMA NONOate has both platelet inhibitory and vasodepressor effects in vivo. The dose ranges for these two effects overlapped, although blood pressure was affected at slightly lower doses. The platelet inhibitory effects compared favourably with those of GSNO, even though NONOates generate free radical NO which, in theory, could have been scavenged by haemoglobin. Therefore platelet inhibition may be a useful therapeutic property of NONOates. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: The heavy usage of coxibs in Australia far outstrips the predicted usage that was based on the treatment of patients with risk factors for upper gastro-intestinal adverse events from conventional anti--inflammatory agents. This raises questions regarding the appropriateness of prescribing. Aims: To determine: (i) the relationship between prescriptions for cyclooxygenase 2 (COX-2) inhibitors and objective evidence of inflammatory arthritis, (ii) prior experience with paracetamol and/or conventional non-steroidal anti-inflammatory drugs (NSAIDs), and (iii) contraindications to the use of NSAIDs. Methods: Drug utilization evaluation and rheumato-logical assessment was conducted on 70 consecutive patients admitted on COX-2 inhibitors to a 480-bed metropolitan hospital. The main outcome measures were: the indication for COX-2 inhibitor; objective -evidence of inflammatory arthritis; previous trial of -paracetamol or conventional NSAIDs; and patient -satisfaction. Results: Only 11 patients (16%) had symptoms or signs of an inflammatory arthropathy, and met Pharmaceut-ical Benefits Schedule criteria for prescribing a COX-2 inhibitor. Fifty-nine patients (84%) had chronic osteo-arthritis, degenerative spinal disease, injury or malignancy, without overt active inflammation. Fourteen patients (20%) had trialled regular paracetamol prior to using any NSAID treatment. Conventional NSAIDs had been previously used by 51 patients (73%). Eleven patients (16%) reported previous adverse gastrointestinal effects from conventional NSAIDs. On the basis of significant renal impairment (creatinine clearance 5/10). Conclusions: Drug utilization data indicate that COX-2 inhibitors are frequently used first line for degenerative osteoarthritis in the absence of overt inflammation, without prior adequate trial of paracetamol and with disregard for the cautions and contraindications of these agents. These findings may explain the unprecedented Pharmaceutical Benefits Schedule expenditure on COX-2 inhibitors in Australia.
Resumo:
Disposition kinetics of [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [H-3] palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [H-3] palmitate and metabolites were measured in four experimentalgroups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [H-3] palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [H-3] palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [H-3] palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.
Resumo:
To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.
Resumo:
Introduction: Statin use for the treatment of hypercholesterolemia in women of childbearing age is increasingly common. However, published data on pregnancy outcome after exposure to statins are scarce and conflicting. This contribution addresses the safety of exposure to statins during pregnancy.Method: In a multi-center (n = 11) observational, prospective study we compared the outcomes of 249 women exposed during the 1st trimester of pregnancy to simvastatin (n = 124), atorvastatin (n = 67), pravastatin (n = 32), rosuvastatin (n = 18), fluvastatin (n = 7) or cerivastatin (n = 1) with a control group exposed to agents known to be non-teratogenic (n = 249). The data were collected by members of the European Network of Teratology Information Services (ENTIS) during individual risk counseling between 1990 and 2009. Standardized procedures for data collection were used in each center.Results: The difference in the rate of major birth defects between the statin-exposed group and the control group was not statistically significant (4.0% vs. 2.7% OR 1.5; 95% CI 0.5-4.5, P = 0.44). The crude rate of spontaneous abortions (12.8% vs. 7.1%, OR 1.9, 95% CI 1.0-3.6, P = 0.04) was higher in the exposed group. However, after adjustment to maternal age and gestational age at initial contact, the difference became statistically insignificant. The rate of elective pregnancy-termination (8.8% vs. 4.4%, P = 0.05) was higher and the rate of deliveries resulting in live births was significantly lower in the statin exposed group (77.9% vs. 88.4%, P = 0.002). Prematurity was more frequent in exposed pregnancies (16.1% vs. 8.5%; OR 2.1, 95% CI 1.1-3.8, P = 0.02). Nonetheless, gestational age at birth (median 39 weeks, IQR 37-40 vs. 39 weeks, IQR 38-40, P = 0.27) and birth weight (median 3280 g, IQR 2835-3590 vs. 3250 g, IQR 2880-3600, P = 0.95) did not differ between exposed and non-exposed pregnancies.Conclusion: This study did not detect a clear teratogenic effect of statins. Its statistical power however is not sufficient to reverse the recommendation of treatment discontinuation during pregnancy. At most, the results are reassuring in case of inadvertent exposure.
Resumo:
Besides CYP2B6, other polymorphic enzymes contribute to efavirenz (EFV) interindividual variability. This study was aimed at quantifying the impact of multiple alleles on EFV disposition. Plasma samples from 169 human immunodeficiency virus (HIV) patients characterized for CYP2B6, CYP2A6, and CYP3A4/5 allelic diversity were used to build up a population pharmacokinetic model using NONMEM (non-linear mixed effects modeling), the aim being to seek a general approach combining genetic and demographic covariates. Average clearance (CL) was 11.3 l/h with a 65% interindividual variability that was explained largely by CYP2B6 genetic variation (31%). CYP2A6 and CYP3A4 had a prominent influence on CL, mostly when CYP2B6 was impaired. Pharmacogenetics fully accounted for ethnicity, leaving body weight as the only significant demographic factor influencing CL. Square roots of the numbers of functional alleles best described the influence of each gene, without interaction. Functional genetic variations in both principal and accessory metabolic pathways demonstrate a joint impact on EFV disposition. Therefore, dosage adjustment in accordance with the type of polymorphism (CYP2B6, CYP2A6, or CYP3A4) is required in order to maintain EFV within the therapeutic target levels.