998 resultados para Climate Forecast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract This article discusses the role of China, Russia, India and Brazil in the climate regime. It describes the trajectory of their emissions, of their domestic policies and of their international commitments, and argues that, despite their responsibility in causing the problem, they have been conservative forces in the climate regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACTThis paper reports an empirical case study on the interface between microfinance and climate change actions. Climate change, which until recently seemed a luxury for the microfinance sector, now appears to be crucial for its future. For their low adaptive capacity, the millions of microfinance clients worldwide happen to be the most vulnerable to a changing climate. However, such an arena is still blurred from an academic viewpoint, and inexistent among Brazilian academia. Therefore, by investigating Brazil’s largest rural MFI, Agroamigo, we aim at providing an empirical contribution to green microfinance. The main conclusion is that, albeit Agroamigo offers important links to climate change initiatives, it will need to take better account of specific vulnerabilities and risks to protect its portfolio and clients better from climate change impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article focuses on the results of the final stage of research into the climate strategies of firms in the automotive and pulp-and-paper industries in Brazil, a country that is becoming increasingly important also in terms of climate change issues. In the first stage, the Climate Strategy Model (CSM) was developed to assess whether firms were adopting the necessary practices to assure the successful implementation of climate strategies. In the second, the CSM was applied to firms in the above mentioned industries that were chosen because of their important role in the domestic economy. In the final stage, interviews with executives of these firms were conducted to identify root causes of climate strategy implementation deficiencies and obtain new insights from an international perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are concerned with providing more empirical evidence on forecast failure, developing forecast models, and examining the impact of events such as audit reports. A joint consideration of classic financial ratios and relevant external indicators leads us to build a basic prediction model focused in non-financial Galician SMEs. Explanatory variables are relevant financial indicators from the viewpoint of the financial logic and financial failure theory. The paper explores three mathematical models: discriminant analysis, Logit, and linear multivariate regression. We conclude that, even though they both offer high explanatory and predictive abilities, Logit and MDA models should be used and interpreted jointly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an energy resources management methodology based on three distinct time horizons: day-ahead scheduling, hour-ahead scheduling, and real-time scheduling. In each scheduling process it is necessary the update of generation and consumption operation and of the storage and electric vehicles storage status. Besides the new operation condition, it is important more accurate forecast values of wind generation and of consumption using results of in short-term and very short-term methods. A case study considering a distribution network with intensive use of distributed generation and electric vehicles is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.