905 resultados para Classification Methods
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.
Resumo:
There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.
Resumo:
Objectives To validate the previously proposed classification criteria for Henoch-Schonlein purpura (HSP), childhood polyarteritis nodosa (c-PAN), c-Wegener granulomatosis (c-WG) and c-Takayasu arteritis (c-TA). Methods Step 1: retrospective/prospective webdata collection for children with HSP, c-PAN, c-WG and c-TA with age at diagnosis <= 18 years. Step 2: blinded classification by consensus panel of a representative sample of 280 cases. Step 3: statistical (sensitivity, specificity, area under the curve and.-agreement) and nominal group technique consensus evaluations. Results 827 patients with HSP, 150 with c-PAN, 60 with c-WG, 87 with c-TA and 52 with c-other were compared with each other. A patient was classified as HSP in the presence of purpura or petechiae (mandatory) with lower limb predominance plus one of four criteria: (1) abdominal pain; (2) histopathology (IgA); (3) arthritis or arthralgia; (4) renal involvement. Classification of c-PAN required a systemic inflammatory disease with evidence of necrotising vasculitis OR angiographic abnormalities of medium-/small-sized arteries (mandatory criterion) plus one of five criteria: (1) skin involvement; (2) myalgia/muscle tenderness; (3) hypertension; (4) peripheral neuropathy; (5) renal involvement. Classification of c-WG required three of six criteria: (1) histopathological evidence of granulomatous inflammation; (2) upper airway involvement; (3) laryngo-tracheo-bronchial involvement; (4) pulmonary involvement (x-ray/CT); (5) antineutrophilic cytoplasmic antibody positivity; (6) renal involvement. Classification of c-TA required typical angiographic abnormalities of the aorta or its main branches and pulmonary arteries (mandatory criterion) plus one of five criteria: (1) pulse deficit or claudication; (2) blood pressure discrepancy in any limb; (3) bruits; (4) hypertension; (5) elevated acute phase reactant. Conclusion European League Against Rheumatism/Paediatric Rheumatology International Trials Organisation/Paediatric Rheumatology European Society propose validated classification criteria for HSP, c-PAN, c-WG and c-TA with high sensitivity/specificity.
Resumo:
Background Schizophrenia has been associated with semantic memory impairment and previous studies report a difficulty in accessing semantic category exemplars (Moelter et al. 2005 Schizophr Res 78:209–217). The anterior temporal cortex (ATC) has been implicated in the representation of semantic knowledge (Rogers et al. 2004 Psychol Rev 111(1):205–235). We conducted a high-field (4T) fMRI study with the Category Judgment and Substitution Task (CJAST), an analogue of the Hayling test. We hypothesised that differential activation of the temporal lobe would be observed in schizophrenia patients versus controls. Methods Eight schizophrenia patients (7M : 1F) and eight matched controls performed the CJAST, involving a randomised series of 55 common nouns (from five semantic categories) across three conditions: semantic categorisation, anomalous categorisation and word reading. High-resolution 3D T1-weighted images and GE EPI with BOLD contrast and sparse temporal sampling were acquired on a 4T Bruker MedSpec system. Image processing and analyses were performed with SPM2. Results Differential activation in the left ATC was found for anomalous categorisation relative to category judgment, in patients versus controls. Conclusions We examined semantic memory deficits in schizophrenia using a novel fMRI task. Since the ATC corresponds to an area involved in accessing abstract semantic representations (Moelter et al. 2005), these results suggest schizophrenia patients utilise the same neural network as healthy controls, however it is compromised in the patients and the different ATC activity might be attributable to weakening of category-to-category associations.
Resumo:
Background-Prasugrel is a novel thienopyridine that reduces new or recurrent myocardial infarctions (MIs) compared with clopidogrel in patients with acute coronary syndrome undergoing percutaneous coronary intervention. This effect must be balanced against an increased bleeding risk. We aimed to characterize the effect of prasugrel with respect to the type, size, and timing of MI using the universal classification of MI. Methods and Results-We studied 13 608 patients with acute coronary syndrome undergoing percutaneous coronary intervention randomized to prasugrel or clopidogrel and treated for 6 to 15 months in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition With Prasugrel-Thrombolysis in Myocardial Infarction (TRITON-TIMI 38). Each MI underwent supplemental classification as spontaneous, secondary, or sudden cardiac death (types 1, 2, and 3) or procedure related (Types 4 and 5) and examined events occurring early and after 30 days. Prasugrel significantly reduced the overall risk of MI (7.4% versus 9.7%; hazard ratio [HR], 0.76; 95% confidence interval [CI], 0.67 to 0.85; P < 0.0001). This benefit was present for procedure-related MIs (4.9% versus 6.4%; HR, 0.76; 95% CI, 0.66 to 0.88; P = 0.0002) and nonprocedural (type 1, 2, or 3) MIs (2.8% versus 3.7%; HR, 0.72; 95% CI, 0.59 to 0.88; P = 0.0013) and consistently across MI size, including MIs with a biomarker peak >= 5 times the reference limit (HR. 0.74; 95% CI, 0.64 to 0.86; P = 0.0001). In landmark analyses starting at 30 days, patients treated with prasugrel had a lower risk of any MI (2.9% versus 3.7%; HR, 0.77; P = 0.014), including nonprocedural MI (2.3% versus 3.1%; HR, 0.74; 95% CI, 0.60 to 0.92; P = 0.0069). Conclusion-Treatment with prasugrel compared with clopidogrel for up to 15 months in patients with acute coronary syndrome undergoing percutaneous coronary intervention significantly reduces the risk of MIs that are procedure related and spontaneous and those that are small and large, including new MIs occurring during maintenance therapy. (Circulation. 2009; 119: 2758-2764.)
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.
Resumo:
Background: Although various techniques have been used for breast conservation surgery reconstruction, there are few studies describing a logical approach to reconstruction of these defects. The objectives of this study were to establish a classification system for partial breast defects and to develop a reconstructive algorithm. Methods: The authors reviewed a 7-year experience with 209 immediate breast conservation surgery reconstructions. Mean follow-up was 31 months. Type I defects include tissue resection in smaller breasts (bra size A/B), including type IA, which involves minimal defects that do not cause distortion; type III, which involves moderate defects that cause moderate distortion; and type IC, which involves large defects that cause significant deformities. Type II includes tissue resection in medium-sized breasts with or without ptosis (bra size C), and type III includes tissue resection in large breasts with ptosis (bra size D). Results: Eighteen percent of patients presented type I, where a lateral thoracodorsal flap and a latissimus dorsi flap were performed in 68 percent. Forty-five percent presented type II defects, where bilateral mastopexy was performed in 52 percent. Thirty-seven percent of patients presented type III distortion, where bilateral reduction mammaplasty was performed in 67 percent. Thirty-five percent of patients presented complications, and most were minor. Conclusions: An algorithm based on breast size in relation to tumor location and extension of resection can be followed to determine the best approach to reconstruction. The authors` results have demonstrated that the complications were similar to those in other clinical series. Success depends on patient selection, coordinated planning with the oncologic surgeon, and careful intraoperative management.
Resumo:
The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
Objective: The aim was to compare there ulcer classification systems as predictors of the outcome of diabetic foot ulcers; the Wagner, the University of Texas (UT) and the size (area, depth), sepsis, arteriopathy, denervation system (S(AD)SAD) systems in specialist clinic in Brazil. Methods: Ulcer area, depth, appearance, infection and associated ischaemia and neuropathy were recorded in a consecutive series of 94 subjects. A novel score, the S(AD)SAD score, was derived from the sum of individual items of the S(AD)SAD system, and was evaluated. Follow-up was for at least 6 months. The primary outcome measure was the incidence of healing. Results: Mean age was 57.6 years; 57 (60.6%) were made. Forty-eight ulcers (51.1%) healed without surgery; 11 (12.2%) subjects underwent minor amputation. Significant differences in terms of healing were observed for depth (P = 0.002), infection (P = 0.006) and denervation (P = 0.002) using the S(AD)SAD system, for UT grade (P = 0.002) and stage (P = 0.032) and for Wagner grades (P = 0.002). Ulcers with an S(AD)SAD score of <= 9 (total possible 15) were 7.6 times more likely to heal than scores >= 10 (P < 0.001). Conclusions: All three systems predicted ulcer outcome. The S(AD)SAD score of ulcer severity could represent a useful addition to routine clinical practice. The association between outcome and ulcer depth confirms earlier reports. The association with infection was stronger than that reported from the centres in Europe or North America. The very strong association with neuropathy has only previously been observed in Tanzania. Studies designed to compare the outcome in different countries should adopt systems of classification, which are valid for the populations studied.
Resumo:
Complete small subunit ribosomal RNA gene (ssrDNA) and partial (D1-D3) large subunit ribosomal RNA gene (lsrDNA) sequences were used to estimate the phylogeny of the Digenea via maximum parsimony and Bayesian inference. Here we contribute 80 new ssrDNA and 124 new lsrDNA sequences. Fully complementary data sets of the two genes were assembled from newly generated and previously published sequences and comprised 163 digenean taxa representing 77 nominal families and seven aspidogastrean outgroup taxa representing three families. Analyses were conducted on the genes independently as well as combined and separate analyses including only the higher plagiorchiidan taxa were performed using a reduced-taxon alignment including additional characters that could not be otherwise unambiguously aligned. The combined data analyses yielded the most strongly supported results and differences between the two methods of analysis were primarily in their degree of resolution. The Bayesian analysis including all taxa and characters, and incorporating a model of nucleotide substitution (general-time-reversible with among-site rate heterogeneity), was considered the best estimate of the phylogeny and was used to evaluate their classification and evolution. In broad terms, the Digenea forms a dichotomy that is split between a lineage leading to the Brachylaimoidea, Diplostomoidea and Schistosomatoidea (collectively the Diplostomida nomen novum (nom. nov.)) and the remainder of the Digenea (the Plagiorchiida), in which the Bivesiculata nom. nov. and Transversotremata nom. nov. form the two most basal lineages, followed by the Hemiurata. The remainder of the Plagiorchiida forms a large number of independent lineages leading to the crown clade Xiphidiata nom. nov. that comprises the Allocreadioidea, Gorgoderoidea, Microphalloidea and Plagiorchioidea, which are united by the presence of a penetrating stylet in their cercariae. Although a majority of families and to a lesser degree, superfamilies are supported as currently defined, the traditional divisions of the Echinostomida, Plagiorchiida and Strigeida were found to comprise non-natural assemblages. Therefore, the membership of established higher taxa are emended, new taxa erected and a revised, phylogenetically based classification proposed and discussed in light of ontogeny, morphology and taxonomic history. (C) 2003 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
Urban regeneration is more and more a “universal issue” and a crucial factor in the new trends of urban planning. It is no longer only an area of study and research; it became part of new urban and housing policies. Urban regeneration involves complex decisions as a consequence of the multiple dimensions of the problems that include special technical requirements, safety concerns, socio-economic, environmental, aesthetic, and political impacts, among others. This multi-dimensional nature of urban regeneration projects and their large capital investments justify the development and use of state-of-the-art decision support methodologies to assist decision makers. This research focuses on the development of a multi-attribute approach for the evaluation of building conservation status in urban regeneration projects, thus supporting decision makers in their analysis of the problem and in the definition of strategies and priorities of intervention. The methods presented can be embedded into a Geographical Information System for visualization of results. A real-world case study was used to test the methodology, whose results are also presented.
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.