261 resultados para Cichlid
Resumo:
Lake Tanganyika, Africa’s oldest lake, harbours an impressive diversity of cichlid fishes. Although diversification in its radiating groups is thought to have been initially rapid, cichlids from Lake Tanganyika show little evidence for ongoing speciation. In contrast, examples of recent divergence among sympatric colour morphs are well known in haplochromine cichlids from Lakes Malawi and Victoria. Here, we report genetic evidence for recent divergence between two sympatric Tanganyikan cichlid colour morphs. These Petrochromis morphs share mitochondrial haplotypes, yet microsatellite loci reveal that their sympatric populations form distinct genetic groups. Nuclear divergence between the two morphs is equivalent to that which arises geographically within one of the morphs over short distances and is substantially smaller than that among other sympatric species in this genus. These patterns suggest that these morphs diverged only recently, yet that barriers to gene flow exist which prevent extensive admixture despite their sympatric distribution. The morphs studied here provide an unusual example of active diversification in Lake Tanganyika’s generally ancient cichlid fauna and enable comparisons of speciation processes between Lake Tanganyika and other African lakes.
Resumo:
Cichlid fish inhabit a diverse range of environments that vary in the spectral content of light available for vision. These differences should result in adaptive selective pressure on the genes involved in visual sensitivity, the opsin genes. This study examines the evidence for differential adaptive molecular evolution in East African cichlid opsin genes due to gross differences in environmental light conditions. First, we characterize the selective regime experienced by cichlid opsin genes using a likelihood ratio test format, comparing likelihood models with different constraints on the relative rates of amino acid substitution, across sites. Second, we compare turbid and clear lineages to determine if there is evidence of differences in relative rates of substitution. Third, we present evidence of functional diversification and its relationship to the photic environment among cichlid opsin genes. We report statistical evidence of positive selection in all cichlid opsin genes, except short wavelength–sensitive 1 and short wavelength–sensitive 2b. In all genes predicted to be under positive selection, except short wavelength–sensitive 2a, we find differences in selective pressure between turbid and clear lineages. Potential spectral tuning sites are variable among all cichlid opsin genes; however, patterns of substitution consistent with photic environment–driven evolution of opsin genes are observed only for short wavelength–sensitive 1 opsin genes. This study identifies a number of promising candidate-tuning sites for future study by site-directed mutagenesis. This work also begins to demonstrate the molecular evolutionary dynamics of cichlid visual sensitivity and its relationship to the photic environment.
Resumo:
The haplochromine cichlids of Lake Victoria constitute a classical example of explosive speciation. Extensive intra– and interspecific variation in male nuptial coloration and female mating preferences, in the absence of postzygotic isolation between species, has inspired the hypothesis that sexual selection has been a driving force in the origin of this species flock. This hypothesis rests on the premise that the phenotypic traits that underlie behavioural reproductive isolation between sister species diverged under sexual selection within a species. We test this premise in a Lake Victoria cichlid, by using laboratory experiments and field observations. We report that a male colour trait, which has previously been shown to be important for behavioural reproductive isolation between this species and a close relative, is under directional sexual selection by female mate choice within this species. This is consistent with the hypothesis that female choice has driven the divergence in male coloration between the two species. We also find that male territoriality is vital for male reproductive success and that multiple mating by females is common.
Resumo:
We propose a new mechanism for diversification of male nuptial–colour patterns in the rapidly speciating cichlid fishes of Lake Victoria. Sympatric closely related species often display nuptial colours at opposite ends of the spectrum with males either blue or yellow to red. Colour polymorphisms within single populations are common too. We propose that competition between males for breeding sites promotes such colour diversification, and thereby speciation. We hypothesize that male aggression is primarily directed towards males of the common colour, and that rare colour morphs enjoy a negatively frequency–dependent fitness advantage. We test our hypothesis with a large dataset on the distributions and nuptial colorations of 52 species on 47 habitat islands in Lake Victoria, and with a smaller dataset on the within–spawning–site distributions of males with different coloration. We report that territories of males of the same colour are negatively associated on the spawning site, and that the distribution of closely related species over habitat islands is determined by nuptial coloration in the fashion predicted by our hypothesis. Whereas among unrelated species those with similar nuptial colour are positively associated, among closely related species those with similar colour are negatively associated and those with different colour are positively associated. This implies that negatively frequency–dependent selection on nuptial coloration among closely related species is a sufficiently strong force to override other effects on species distributions. We suggest that male–male competition is an important and previously neglected agent of diversification among haplochromine cichlid fishes.
Resumo:
Aim Current estimates of species richness within rapidly evolving species flocks are often highly dependent on the species status of allopatric populations that differ in phenotypic traits. These traits may be unreliable indicators of biological species status and systematists may have inconsistently assigned species among lineages or locations on the basis of these traits, thus hampering comparative studies of regional species richness and speciation rates. Our aim was to develop a method of generating standardized estimates of regional species richness suitable for comparative analysis, and to use these estimates to examine the extent and consistency of species assignment of allopatric populations within rapidly evolving cichlid fish flocks present in three east African lakes. Location Lakes Malawi, Victoria and Tanganyika. Methods Using published taxon co-occurrence data, a novel approach was employed to calculate standardized ‘minimum’ estimates of regional species richness for hard substrate associated complexes of cichlids within each of the lakes. Minimum estimates were based on an explicit assumption that if taxa present on equivalent habitats have disjunct distributions, then they are allopatric forms of the same species. These estimates were compared with current observed ‘high-end’ regional species richness estimates for those complexes to determine the consistency of species assignment of allopatric populations between lineages within a lake. A ‘sympatry’ index was developed to enable comparisons of levels of species assignment of allopatric populations between-lakes to be made. Results Within each lake, the minimum and high-end estimates for species richness were significantly correlated across complexes, indicating that the complexes that contain more recognized species contain the most genuine biological species. However, comparisons of complexes among lakes revealed considerable differences. For equivalent geographical areas, substantially higher proportions of recognized species were totally allopatric within the studied Lake Malawi and Lake Victoria complexes, than those of Lake Tanganyika. Main Conclusions Among African lakes, levels of assignment to species status of allopatric populations were found to be distinctly different. It is unclear whether the discrepancies are a consequence of differences between the lake faunas in degrees of phenotypic divergence among allopatric populations, or are simply the result of inconsistent taxonomic practices. In either case, these results have considerable wider relevance for they emphasize that quantitative measures of regional and beta diversity are critically dependent on the species status of allopatric populations, an issue usually neglected in comparative studies of species richness. The technique introduced here can be used to standardize measures of regional diversity of lineages for comparative analyses, potentially enabling more accurate identification of processes influencing rates of speciation.
Resumo:
Phylogenetic analyses based on mitochondrial (mt) DNA have indicated that the cichlid species flock of the Lake Victoria region is derived from a single ancestral species found in East African rivers, closely related to the ancestor of the Lake Malawi cichlid species flock. The Lake Victoria flock contains ten times less mtDNA variation than the Lake Malawi radiation, consistent with current estimates of the ages of the lakes. We present results of a phylogenetic investigation using nuclear (amplified fragment length polymorphism) markers and a wider coverage of riverine haplochromines. We demonstrate that the Lake Victoria–Edward flock is derived from the morphologically and ecologically diverse cichlid genus Thoracochromis from the Congo and Nile, rather than from the phenotypically conservative East African Astatotilapia. This implies that the ability to express much of the morphological diversity found in the species flock may by far pre–date the origin of the flock. Our data indicate that the nuclear diversity of the Lake Victoria–Edward species flock is similar to that of the Lake Malawi flock, indicating that the genetic diversity is considerably older than the 15 000 years that have passed since the lake began to refill. Most of this variation is manifested in trans–species polymorphisms, indicating very recent cladogenesis from a genetically very diverse founder stock. Our data do not confirm strict monophyly of either of the species flocks, but raise the possibility that these flocks have arisen from hybrid swarms.
Resumo:
Repeated evolution of the same phenotypic difference during independent episodes of speciation is strong evidence for selection during speciation. More than 1,000 species of cichlids, >10% of the world's freshwater fish species, have arisen within the past million years in Lakes Malawi and Victoria in eastern Africa. Many pairs of closely related sympatric species differ in their nuptial coloration in very similar ways. Nuptial coloration is important in their mate choice, and speciation by sexual selection on genetically or ecologically constrained variation in nuptial coloration had been proposed, which would repeatedly produce similar nuptial types in different populations, a prediction that was difficult to test in the absence of population-level phylogenies. We measured genetic similarity between individuals within and between populations, species, and lake regions by typing 59 individuals at >2,000 polymorphic genetic loci. From these data, we reconstructed, to our knowledge, the first larger species level phylogeny for the most diverse group of Lake Malawi cichlids. We used the genetic and phylogenetic data to test the divergent selection scenario against colonization, character displacement, and hybridization scenarios that could also explain diverse communities. Diversity has arisen by replicated radiations into the same color types, resulting in phenotypically very different, yet closely related, species within and phenotypically highly similar yet unrelated sets of species between regions, which is consistent with divergent selection during speciation and is inconsistent with colonization and character displacement models.
Resumo:
Lake Malawi boasts the highest diversity of freshwater fishes in the world. Nearshore sites are categorized according to their bottom substrate, rock or sand, and these habitats host divergent assemblages of cichlid fishes. Sexual selection driven by mate choice in cichlids led to spectacular diversification in male nuptial coloration. This suggests that the spectral radiance contrast of fish, the main determinant of visibility under water, plays a crucial role in cichlid visual communication. This study provides the first detailed description of underwater irradiance, radiance and beam attenuation at selected sites representing two major habitats in Lake Malawi. These quantities are essential for estimating radiance contrast and, thus, the constraints imposed on fish body coloration. Irradiance spectra in the sand habitat were shifted to longer wavelengths compared with those in the rock habitat. Beam attenuation in the sand habitat was higher than in the rock habitat. The effects of water depth, bottom depth and proximity to the lake bottom on radiometric quantities are discussed. The radiance contrast of targets exhibiting diffused and spectrally uniform reflectance depended on habitat type in deep water but not in shallow water. In deep water, radiance contrast of such targets was maximal at long wavelengths in the sand habitat and at short wavelengths in the rock habitat. Thus, to achieve conspicuousness, color patterns of rock-and sand-dwelling cichlids would be restricted to short and long wavelengths, respectively. This study provides a useful platform for the examination of cichlid visual communication.
Resumo:
Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
Resumo:
Studies from a wide diversity of taxa have shown a negative relationship between genetic compatibility and the divergence time of hybridizing genomes. Theory predicts the main breakdown of fitness to happen after the F1 hybrid generation, when heterosis subsides and recessive allelic (Dobzhansky-Muller) incompatibilities are increasingly unmasked. We measured the fitness of F2 hybrids of African haplochromine cichlid fish bred from species pairs spanning several thousand to several million years divergence time. F2 hybrids consistently showed the lowest viability compared to F1 hybrids and non-hybrid crosses (crosses within the grandparental species), in agreement with hybrid breakdown. Especially the short- and long-term survival (2 weeks to 6 months) of F2 hybrids was significantly reduced. Overall, F2 hybrids showed a fitness reduction of 21% compared to F1 hybrids, and a reduction of 43% compared to the grandparental, non-hybrid crosses. We further observed a decrease of F2 hybrid viability with the genetic distance between grandparental lineages, suggesting an important role for negative epistatic interactions in cichlid fish postzygotic isolation. The estimated time window for successful production of F2 hybrids resulting from our data is consistent with the estimated divergence time between the multiple ancestral lineages that presumably hybridized in three major adaptive radiations of African cichlids.
Resumo:
The cichlid fish radiations in the African Great Lakes differ from all other known cases of rapid speciation in vertebrates by their spectacular trophic diversity and richness of sympatric species, comparable to the most rapid angiosperm radiations. I review factors that may have facilitated these radiations and compare these with insights from recent work on plant radiations. Work to date suggests that it was a coincidence of ecological opportunity, intrinsic ecological versatility and genomic flexibility, rapidly evolving behavioral mate choice and large amounts of standing genetic variation that permitted these spectacular fish radiations. I propose that spatially orthogonal gradients in the fit of phenotypes to the environment facilitate speciation because they allow colonization of alternative fitness peaks during clinal speciation despite local disruptive selection. Such gradients are manifold in lakes because of the interaction of water depth as an omnipresent third spatial dimension with other fitness-relevant variables. I introduce a conceptual model of adaptive radiation that integrates these elements and discuss its applicability to, and predictions for, plant radiations.
Resumo:
Geophysical data are currently being interpreted as evidence for a late Pleistocene desiccation of Lake Victoria and its refilling 14 600 years ago. This implies that between 500 and 1000 endemic cichlid fish species must have evolved in 14 600 years, the fastest large-scale species radiation known. A recent review concludes that biological evidence clearly rejects the postulated Pleistocene desiccation of the lake: a 14 600 year history would imply exceptionally high speciation rates across a range of unrelated fish taxa. To test this suggestion, I calculated speciation rates for all 41 phylogenetic lineages of fish in the lake. Except for one cichlid lineage, accepting a 14 600 year history does not require any speciation rates that fall outside the range observed in fishes in other young lakes around the world. The exceptional taxon is a lineage of haplochromine cichlids that is also known for its rapid speciation elsewhere. Moreover, since it is unknown how many founding species it has, it is not certain that its speciation rates are really outside the range observed in fishes in other young lakes. Fish speciation rates are generally faster in younger than in older lakes, and those in Lake Victoria, by far the largest of the young lakes of the world, are no exception. From the speciation rates and from biogeographical observations that Lake Victoria endemics, which lack close relatives within the lake basin, have such relatives in adjacent drainage systems that may have had Holocene connections to Lake Victoria, I conclude that the composition of the fish assemblage does not provide biological evidence against Pleistocene desiccation. It supports a hypothesis of recent colonization from outside the lake basin rather than survival of a diverse assemblage within the basin.
Resumo:
Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.
Resumo:
The endemic cichlid fishes of Lakes Malawi, Tanganyika and Victoria are textbook examples of explosive speciation and adaptive radiation, and their study promises to yield important insights into these processes. Accurate estimates of species richness of lineages in these lakes, and elsewhere, will be a necessary prerequisite for a thorough comparative analysis of the intrinsic and extrinsic factors influencing rates of diversification. This review presents recent findings on the discoveries of new species and species flocks and critically appraises the relevant evidence on species richness from recent studies of polymorphism and assortative mating, generally using behavioural and molecular methods. Within the haplochromines, the most species-rich lineage, there are few reported cases of postzygotic isolation, and these are generally among allopatric taxa that are likely to have diverged a relatively long time in the past. However, many taxa, including many which occur sympatrically and do not interbreed in nature, produce viable, fertile hybrids. Prezygotic barriers are more important, and persist in laboratory conditions in which environmental factors have been controlled, indicating the primary importance of direct mate preferences. Studies to date indicate that estimates of alpha (within-site) diversity appear to be robust. Although within-species colour polymorphisms are common, these have been taken into account in previous estimates of species richness. However, overall estimates of species richness in Lakes Malawi and Victoria are heavily dependent on the assignation of species status to allopatric populations differing in male colour. Appropriate methods for testing the specific status of allopatric cichlid taxa are reviewed and preliminary results presented.