1000 resultados para Chuanxi Plateau, China
Resumo:
Uranium isotopes were measured in waters and suspended particulate matters (SPM) of the main channel of Yellow River, China that were sampled during four field trips between August 2005 and July 2006. The results show that the concentration of dissolved U (2.04-7.83 mu g/l) and the activity ratio of U-234/U-238 (1.36-1.67) are much higher than the average U concentrations and activity ratios of global major rivers. Mass balance calculations using the results of simulated experiments and measurement data show that the section of the Yellow River between Lanzhou and Sanmenxia has its dissolved U derived from two sources: suspended sediments (68%) and groundwater/runoff from loess deposits (32%). Both sources are related to the heavy erosion of the Chinese Loess Plateau. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Eolian flux in the Chinese Loess Plateau was reconstructed by measuring the dry bulk density and CaCO3 content of the late Cenozoic loess-paleosol-red clay sequences in the Lingtai profile. Comparison of eolian flux variation between the Lingtai profile and the ODP sites 885/886 in the North Pacific shows a significant wet-dry variability in addition to a gradual drying trend in the dust source regions in interior Asia. Especially, the increase of eolian fluxes from both continental and pelagic eolian sediments indicates a sharp drying of the dust source regions between 3.6 and 2.6 MaBP, which might be attributed to the tectonic uplift of the Tibetan Plateau, which cut down the moisture input to the interior Asia. The average value and variability of eolian flux are higher after 2.6 MaBP than before, which may be related to the Quaternary climatic fluctuations on the glacial-interglacial timescale after the commencement of major Northern Hemisphere Glaciations. The eolian fluxes of the Lingtai profile and Core V21-146 in northwest Pacific show a synchronous variation on the 10(4)-10(5) a timescale, indicating that the flux variations from both continental and marine records are closely correlated to the Quaternary climatic fluctuation forced by the ice volume changes on a global scale.
Resumo:
The characteristics of the modern monsoon climate of China may be used as clues for recognizing the records of paleomonsoon climate. The present paper deals primarily with the various paleomonsoon records of the last 130,000 years in the southeast monsoon area. These records mainly come from the following three fields: (i) the historical, (ii) the geological, including loess-paleosol sequence, deserts, lakes, snowlines, timberlines, the phenomena of continental desertization and so on, and (iii) the biological, presented by vegetation a.d mammals. Among these records, the loess-paleosol sequence in the Loess Plateau reflects a climatic history characterized by alternation of two different climatic periods when the Asian winter monsoon and summer monsoon showed pronounced effects on environment, respectively.
Resumo:
Based upon the effect of land-sea interaction on the paleomonsoon variation and the time series of climatic proxy-indicators, the historical Asian monsoon variation over the last 130,000 and 18,000 years has been reconstructed with an emphasis on the basic characteristics of summer monsoon circulation. The monsoon-climatic cycles and associated model of environmental development over the central and eastern China are proposed and the mechanism of paleomonsoon variation of China preliminarily discussed. The variation of East Asian monsoon circulation should be regarded as a regional result of both solar-radiation changes and the global glacial-interglacial cycles. The episodic uplifting of the Qinghai-Xizang Plateau since the late Miocene has to a large extent controlled the forming and evolution of the paleomonsoon circulation of China.
Resumo:
We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea based On a multi-proxy approach including a monomineralic quartz isolation procedure, identification of clay minerals by X-ray Diffraction (XRD) and grain-size analysis of isolated terrigenous materials. Terrigenous supply to ODP Site 1146 was dominated by changes in the strength of multiple sources and transport processes. Grain-size data modeled by an end-member modeling algorithm indicate that eolian dust from the and Asian inland and fluvial input have contributed on average 20% and 80% of total terrigenous material to ODP Site 1146, respectively. Specifically, about 40-53% of the total (quartz+feldspar) and only 6-11% of the total clay is related to eolian supply at the study site. Detailed analysis of the sedimentary environment, and clay minerals combined with previous studies shows that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The proportion and mass accumulation rate (MAR) of the coarsest end-member EM1 (interpreted as eolian dust), ratios of (illite+chlorite)/smectite, (quartz+feldspar)% and mean grain-size of terrigenous materials at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound shifts in the intensity of East Asian winter monsoon relative to summer monsoon, as well as aridity of the Asian continent, occurred at similar to 15 Ma, similar to 8 Ma and the youngest at about 3 Ma. In comparison, the summer monsoon intensified contemporaneously with the winter monsoon at 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at similar to 15 Ma, 8 Ma and 3 Ma. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian mon-soon since about 20 Ma. 10-19 mu m/1.3-2.4 mu m, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.
Resumo:
The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since I Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.
Resumo:
Based on surface energy flux data measured by eddy covariance methods from China Flux in alpine swamp meadow of the Qinghai Tibetan Plateau in 2005, the daily and seasonal dynamic of surface energy fluxes and their partitioning, as well as abiotic factors effects were analyzed. The results suggested that LE (Latent heat flux) was the largest consumer of the incoming energy. Rn (Net radiation flux) and LE showed clear seasonal variations in sharp hump and up to their maximums in August and July, respectively. H (Sensible heat flux) increased to its peak in August whereafter declined slowly. Precipitation could reduce the components of surface energy. As to Rn and LE, their correlations with abiotic factors were evident while it was not significant in H. Average EBR (Energy balance ratio) was 50.7 %, which was much larger in growing season than non-growing season.
Resumo:
There are 47 genera and 161 species of Gramineae except the cultivated species in the area of the Karakorum and Kunlun Mountains. The results of research on the distribution of the genera and species of Gramineae in the Karakorum and Kunlun Mountains show that (1) The Gramineae mainly contains elements of North Temperate, rich Old Word Temperate and other Temperate. It is obvious that the floristic nature of Gramineae in the Karakorum and Kunlun Mountains is the North Temperate; (2) All Pantropic genera can stretch to the Temperate Zone in this region, which all parts of the Pantropic type are the Temperate nature to a certain degree. For example, Erianthus ravennae from mediterranean to the Karakorum and Kunlun Mountains through the Central Asia; (3) As most genera of Grasses are the type of Temperate and the Frigid Zone, they have distinct floristic characteristics of mountainous and plateau flora such as Orinus, Alopecurus, Elymus, Trisetum, Littledalea, Elytrigia, Stephanachne and Paracolpodium etc. All of these indicate adaptive phenomenon of alpine specialization and cold-xerophilization on Grasses in this area; (4) Endemic genus of Gramineae is absent due to its nature and history and the endemic species are also rare in the Karakorum and Kunlun Mountains. Most of the genera with one or fewer species have originated from its relative and widespread genera, such as Ptilagrostis from Stipa, Timouria from Achnatherum, and so on; (5) Flora of the Karakorum and Kunlun Mountains is most closely related to the flora of Tibet, and is also extensively to its adjacent areas.
Resumo:
This research was conducted on alpine meadow site at Menyuan county, Qinghai Province, People's Republic of China to determine the effects of native, subterranean rodent of Qinghai-Tibet grasslands, the plateau zokors (Myospalax baileyi), on seasonal above-and below-ground plant biomass, plant species diversity and productivity. Both total peaks of above-and below-ground biomass were the greatest (413.600 g/m~2 and 2297.502 g/m~2) in the patch no any plateau zokors colonized by plateau zokors over 10 years in August and October, respectively. Both above-and below-ground biomass were significantly increased in the patches where plateau zokors were removed or the burrow systems were abandoned for five years compared to the patches plateau zokors colonized over 10 years. However, both above-and below-ground biomass in abandoned patches were significantly lower than that in uncolonized patches. Monocotyledonous biomass was reduced greatly, but the non-palatable dicots were significantly increased in colonized patches. The palatable biomass of monocots and dicots were increased in abandoned patches. Total plant species diversity was the greatest in uncolonized patchesand least in abandoned patch. The total net primary production in colonized patches was reduced by 68.98% compared with uncolonized patches. Although the patches were without any plateau zokors disturbance for fives years, the total net primary production just reached 58.69% of the uncolonized patches. The above-ground net primary production in abandoned patches increased 28.74% and the below-ground increased 54.91% compared with the colonized patches. We suggest that plateau zokor-induced changes in plant above- and below-ground biomass and species diversity may lead to further alterations of nutrient cycling and trophic dynamics in this alpine meadow ecosystem.
Resumo:
A total of 449 plateau pika (Ochotona curzoniae Hudgson) individuals were sampled with rattraps from 21 plots (size 1 ha) randomly scattered over the area of the species distribution at the altitude 3275-4807 in a.s.l. in the Qinghai-Tibetan Plateau (West China). Two main ectoparasite species Hypoderma satyrus Brauer and Ixodes crenulatus Neumann of plateau pika were surveyed, and the relations between host sex and parasitism were analyzed. The results were: (i) although not significantly, the infection rate of female young was close to zero and lower than that of male young (6%), while the infection rate of female sub-adults (19%) was contrarily - higher than that of male sub-adults (11%); adult females had significantly higher (41%) infection rate than that of males (18%) (P<0.001); (ii) the parasite infection rates for both males and females increased with increasing age, but female age-groups had obviously steeper slope. We suggested that the differences of body mass, growth rate and home range between males and females had mainly caused the sex-biased parasitism (SBP) of plateau pika at each age stage. Also, due to the higher increases of body mass and maybe as well as of the home range differences between consecutive age-groups, the parasite infections of females became more sensitive to the influences of age than that of males.
Resumo:
This paper provides information about the distribution, structure, and ecology of the world's largest alpine ecosystem, the Kobresia pygmaea pastures in the southeastern Tibetan plateau. The environmental importance of these Cyperaceae mats derives from the extremely firm turf, which protects large surfaces against erosion, including the headwaters of the Huang He, Yangtze, Mekong, Salween, and Brahmaputra. The emphasis of the present article is on the climate-driven evolution and recent dynamics of these mats under the grazing impact of small mammals and livestock. Considering pedological analyses, radiocarbon datings, and results from exclosure experiments, we hypothesize that the majority of K. pygmaea mats are human-induced and replace forests, scrub, and taller grasslands. At present, the carrying capacity is increasingly exceeded, and reinforced settlement of nomads threatens this ecosystem especially in its drier part, where small mammals become strong competitors with livestock and the removal of the turf is irreversible. Examples of rehabilitation measures are given.
Resumo:
Grazing by domestic herbivores is generally recognized as a major ecological factor and an important evolutionary force in grasslands. Grazing has both extensive and profound effects on individual plants and communities. We investigated the response patterns of Polygonum viviparum species and the species diversity of an alpine shrub meadow in response to long-term livestock grazing by a field manipulative experiment controlling livestock numbers on the Qinghai-Tibet Plateau in China. Here, we hypothesize that within a range of grazing pressure, grazing can alter relative allocation to different plant parts without changing total biomass for some plant species if there is life history trade-offs between plant traits. The same type of communities exposed to different grazing pressures may only alter relative species' abundances or species composition and not vary species diversity because plant species differ in resistant capability to herbivory. The results show that plant height and biomass of different organs differed among grazing treatments but total biomass remained constant. Biomass allocation and absolute investments to both reproduction and growth decreased and to belowground storage increased with increased grazing pressure, indicating the increasing in storage function was attained at a cost of reducing reproduction of bulbils and represented an optimal allocation and an adaptive response of the species to long-term aboveground damage. Moreover, our results showed multiform response types for either species groups or single species along the gradient of grazing intensity. Heavy grazing caused a 13.2% increase in species richness. There was difference in species composition of about 18%-20% among grazing treatment. Shannon-Wiener (H') diversity index and species evenness (E) index did not differ among grazing treatments. These results support our hypothesis.