997 resultados para Chl a


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the study of fluvial sandstone reservoir in upper of Guantao group in Gudao and Gudong oilfields, this paper first introduces A.D.Miall's(1996a) architectural-element analysis method that was summarized from ground outcrop scale into the reservoir formation research of the study area, more subtly divides sedimentary microfacies and establishes sedimentary model of research area.on this base, this paper summarizes the laws of residual oil distribution of fluvial formation and the control effect of sedimentary microfacies to residual oil distribution, and reveals residual oil formation mechanism. These results have been applied to residual oil production, and the economic effect is good. This paper will be useful for residual oil research and production and enhancement of oil recovery in similar reservoir. The major conclusions of this paper are as follows. 1. Using the architectural-element analysis method to the core data, a interfacial division scheme of the first to the dixth scale is established for the studied fluvial formation. 2.Seven architectural-elements are divided in upper of Guantao group of study area. The sandstone group 5~1+2 of Neogene upper Gutao group belongs to high sinuous fine grain meandering river, and the sandstone group 6 is sandy braided river. 3. Inter layer, the residual oil saturation of "non-main layer" is higher than "main layer", but the residual recoverable reserve of former is larger. Therefore, "main layer" is the main body of residual oil distribution. The upper and middle part of inner layer has lower permeability and strong seeping resistance. Addition to gravity effect in process of driving, its driving efficiency is low; residual oil saturation is high. Because of controlling of inside non-permeable interlayer or sedimentary construction, the residual oil saturation of non-driving or lower driving efficiency position also is high. On plane, the position of high residual oil saturation mostly is at element LV, CS, CH (FF), FF etc, Which has lower porosity and permeability, as well as lens sand-body and sand-body edge that is not controlled by well-net, non-perfect area of injection and production, lower press difference resort area of inter-well diffiuent-line and shelter from fault, local high position of small structure. 4.Microscopic residual oil mainly includes the non-moved oil in the structure of fine pore network, oil in fine pore and path, oil segment in pore and path vertical to flow direction, oil spot or oil film in big pore, residual oil in non-connective pore. 5.The most essential and internal controlling factor of fluvial formation residual oil distribution is sedimentary microfacies. Status of injection and production is the exterior controlling factor of residual oil distribution. 6. The controlling effect of formation sedimentary microfacies to residual oil distribution indicates inter-layer vertical sedimentary facies change in scale of injection and production layer-series, planar sedimentary face change and inner-layer vertical sedimentary rhythm and interbed in single layer to residual oil distribution. 7. It is difficult to clear up the inter-layer difference in scale of injection and production layer-series. The using status of minor layer is not good and its residual oil saturation is high relatively. It is obvious that inter-layer vertical sedimentary facies changes control inter-layer residual oil distribution at the same or similar conditions of injection and production. For fluvial formation, this vertical sedimentary facies change mainly is positive gyration. Namely, from down to top, channel sediment (element CHL, LA) changes into over-bank sediment (element LV, CR, CS). 8. In water-injection developing process of transverse connecting fluvial sandstone oil formation, injection water always comes into channel nearby, and breaks through along channel and orientation of high pressure gradient, does not expand into side of channel until pressure gradient of channel orientation changes into low. It brings about that water-driving status of over-bank sedimentary element formation (LV, CR, CS) is not good, residual oil saturation is high. In non-connective abandoned channel element (CH) formation with channel, because this reverse is difficult to control by injection and production well-series, its using status is not good, even terribly not good, residual oil is enrichment. 9. The rhythm and sedimentary structure, sedimentary facies change in single sand body brings about vertical changes of formation character, growth character of inner layer interbed. These are important factor of controlling and affecting vertical water spread volume and inner layer residual oil forming and distribution in single sand body. Positive rhythm, is the principal part of fluvial sandstone inner layer sedimentary rhythm. Namely, from down to upside, rock grain granularity changes from coarse to fine, seeping ability changes from strong to feebleness. It brings about that water-driving status of inner layer upside is not good, residual oil saturation is high. Inner layer interbed has different degree affecting and controlling effect to seeping of oil and water. Its affecting degree lies on interbed thickness, extending scale, position, and jeted segment of production or injection well. The effect of interbed at upside of oil formation to oil and water seeping is less; the effect of interbed at middle of oil formation to oil and water seeping is more. 10. Indoor experiment and research indicate that wettability, permeability step, vertical permeability, position of Kmax and ratio of oil viscousity and water viscousity all have great effect on the water-driving recovery ratio. 11. Microscopic residual oil distribution is affected and controlled by formation pore network structure, pressure field distribution, and oil characteristic. 12.The residual oil forming mechanism: the over-bank sedimentary element and upper part of a positive rhythm sandstone have fine pore and throat network, permeability is low, displacement pressure of pore and throat is high. The water-driving power usually falls short of displacement pressure that brings about injection water does not spread into these pore and throat network, thereby immovable oil area, namely residual oil, is formed. At underside of channel sedimentary element and positive rhythm sandstone, porosity and permeability is relatively high, connecting degree of pore and throat is high, displacement pressure of pore and throat is low. Thereby injection water is easy to enter into pore and throat, driving oil in them. Because the pore space is irregular, the surface of pore wall is coarse and non-flat. That the oil locate on concave hole of pore wall and the dead angle of pore, and the oil attaches on surface of pore wall by surface tension, are difficult to be peeled off, becoming water-driving residual oil (remaining oil). On the other hand, Because flowing section lessens, flowing resistance increase, action of capillary fore, or seeping speed decreases at process of transfer at pass narrow throat path in the course carried by driving water. The "oil drop", "oil bead", or "oil segment" peeled off by driving water is difficult to carry and to drive out by water at less pressure difference. Thereby they are enclosed in pore to form discontinuous residual oil. 13.This results described above have been applied in nine develop blocks of Gudao and Gudong oilfield. Its applying effect is marked through local injection production adjustment, deploying replacement well, repair hole, replacement envelop, block off water and profile control etc. Relative method and technology can be applied to other oil production area of Shengli oilfield, and obtain better economic and societal effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

实验研究了菲在土壤/沉积物上的吸附一解吸过程。CHL土壤和HFH沉积物中有机质的固相^13C CP MAS NMR谱图很相似,表明样品中有机质的组成差异不大;菲在土壤/沉积物上的吸附过程表现出明显的非线性;线性模型不适合拟合菲的吸附等温线,Freundlich模型和双区位反应模型(DRDM)较好地拟合了菲的吸附等温线,其中DRDM模型还清楚地反映菲在低浓度和高浓度下不同的吸附方式;另外,研究表明菲在土壤/沉积物上的解吸过程中存在明显的滞后现象,这可能和土壤/沉积物有机质的异质性和土壤胶团微小孔隙的存在有关。实验研究了菲在土壤/沉积物上的吸附一解吸过程。CHL土壤和HFH沉积物中有机质的固相^13C CP MAS NMR谱图很相似,表明样品中有机质的组成差异不大;菲在土壤/沉积物上的吸附过程表现出明显的非线性;线性模型不适合拟合菲的吸附等温线,Freundlich模型和双区位反应模型(DRDM)较好地拟合了菲的吸附等温线,其中DRDM模型还清楚地反映菲在低浓度和高浓度下不同的吸附方式;另外,研究表明菲在土壤/沉积物上的解吸过程中存在明显的滞后现象,这可能和土壤/沉积物有机质的异质性和土壤胶团微小孔隙的存在有关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of satellite remote sensing data has revealed changes in distribution of chlorophyll-a (Chl-a) and sea surface temperature (SST) in the Indian Ocean during the South Asian tsunami in December 2004. Chl-a data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-ofview Sensor (SeaWiFS) images were examined for the period from 1998 to 2005. Around the epicentre of the Sumatra earthquake, the Chl-a concentrationwas found to increase prior to the main event on 26 December 2004 and then decrease during the tsunami event, while a high SST (~30-31°C) was observed in and around the epicentral region. Chl-a concentrations in the coastal waters of the Southeast Asian countries were remarkably low during and after the tsunami. Similar but relatively small variations inChl-a and SST were observed during the second earthquake on 28 March 2005. Analysis of Chl-a, SST, wind and upwelling water has provided information for understanding the changes in Chl-a concentration during the tsunami. A very large offshore phytoplankton bloom (~300 km2) appeared to the southeast of Sri Lanka about 3 weeks after the tsunami; this might have been caused by a tropical storm that could be responsible for the enhancement of nutrients. © 2009 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured membrane permeability, hydrolytic enzyme, and caspase-like activities using fluorescent cell stains to document changes caused by nutrient exhaustion in the coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-culture nutrient limitation. We related these changes to cell death, pigment alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) to assess the transformation of these compounds as cell physiological condition changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA populations and retained membrane integrity (SYTOX Green). Caspase-like activity appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation and transformation occurred in both species after growth; chlorophyll a (Chl a) degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. pseudonana death, suggesting a promising approach to discriminate nonviable cells in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition and distribution of phytoplankton assemblages around the tip of the Antarctic Peninsula were studied during two summer cruises (February/March 2008 and 2009). Water samples were collected for HPLC/CHEMTAX pigment and microscopic analysis. A great spatial variability in chlorophyll a (Chl a) was observed in the study area: highest levels in the vicinity of the James Ross Island (exceeding 7 mg m−3 in 2009), intermediate values (0.5 to 2 mg m−3) in the Bransfield Strait, and low concentrations in the Weddell Sea and Drake Passage (below 0.5 mg m−3). Phytoplankton assemblages were generally dominated by diatoms, especially at coastal stations with high Chl a concentration, where diatom contribution was above 90% of total Chl a. Nanoflagellates, such as cryptophytes and/or Phaeocystis antarctica, replaced diatoms in open-ocean areas (e.g., Weddell Sea). Many species of peridinin-lacking autotrophic dinoflagellates (e.g., Gymnodinium spp.) were also important to total Chl a biomass at well-stratified stations of Bransfield Strait. Generally, water column structure was the most important environmental factor determining phytoplankton communities’ biomass and distribution. The HPLC pigment data also allowed the assessment of different physiological responses of phytoplankton to ambient light variation. The present study provides new insights about the dynamics of phytoplankton in an undersampled region of the Southern Ocean highly susceptible to global climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coccolithophores, the dominant pelagic calcifiers in the oceans, play a key role in the marine carbon cycle through calcification, primary production and carbon export, the main drivers of the biological CO2 pump. In May 2002 a cruise was conducted on the outer shelf of the North-West European continental margin, from the north Bay of Biscay to the Celtic Sea (47.0 degrees-50.5 degrees N, 5.0 degrees-11.0 degrees W), an area where massive blooms of Emiliania huxleyi are observed annually. Biogeochemical variables including primary production, calcification, partial pressure of CO2 (pCO(2)), chlorophyll-a (Chl-a), particle load, particulate organic and inorganic carbon (POC, PIC) and Th-234, were measured in surface waters to assess particle dynamic and carbon export in relation to the development of a coccolithophore bloom. We observed a marked northward decrease in Chl-a concentration and calcification rates: the bloom exhibited lower values and may be less well developed in the Goban Spur area. The export fluxes of POC and PIC from the top 80 m, determined using the ratios of POC and PIC to Th-234 of particles, ranged from 81 to 323 mg C m(-2) d(-1) and from 30 to 84 mg C m(-2) d(-1), respectively. The highest fluxes were observed in waters presenting a well-developed coccolithophore bloom, as shown by high reflectance of surface waters. This experiment confirms that the occurrence of coccolithophores promotes efficient export of organic and inorganic carbon on the North-West European margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristics of the spring and fall phytoplankton blooms in spawning areas on the Scotian Shelf, Canada, were estimated from remote sensing data. These blooms, along with anomalies in the North Atlantic Oscillation, were used to explain variation in the recruitment of 4 populations of cod and haddock. We tested the effects of the timing of the bloom using the chlorophyll a (chl a) signal, the maximum amount of chl a, the timing of the diatom bloom, and the maximum relative dominance of diatoms on the recruitment (to Age 1) of cod and haddock on the Scotian Shelf. Models were run separately for the effects of the spring and fall blooms. Only 3 of 10 models tested (0-lag) explained significant (80 to 92%) variation in recruitment. However, the performance of these models was not consistent across populations or species, suggesting that generalities about how spring and fall phytoplankton blooms affect recruitment cannot yet be made. The differences among models suggest that fish larvae are probably adapted locally to food production and thus indirectly to the characteristics of the phytoplankton bloom, which in turn are influenced by regional (meso-scale) oceanographic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broad scale climate forcing can interact with local environmental processes to affect the observed ecological phenomena. This causes potential problems of over-extrapolation for results from a limited number of sites or the averaging out of region-specific responses if data from too wide an area are combined. In this study, an area similar in extent to the Celtic Biscay Large Marine Ecosystem, but including off-shelf areas, was partitioned using clustering of satellite chlorophyll (chl-a) measurements. The resulting clusters were used to define areas over which to combine copepod data from the Continuous Plankton Recorder. Following filtering due to data limitations, nine regions were defined with sufficient records for analysis. These regions were consistent with known oceanographic structure in the study area. Off-shelf regions showed a progressively later timing in the seasonal peak of chl-a measurements moving northwards. Generalised additive models were used to estimate seasonal and multiannual signals in the adult and juvenile stages of Calanus finmarchicus, C. helgolandicus and the Paracalanus–Pseudocalanus group. Associations between variables (sea surface temperature (SST), phenology and annual abundance) differed among taxonomic groups, but even within taxonomic groups, relationships were not consistent across regions. For example, in the deep waters off Spain and Portugal the annual abundance of Calanus finmarchicus has a weak positive association with SST, in contrast to the pattern in most other regions. The regions defined in this study provide an objective basis for investigations into the long term dynamics of plankton populations and suggest suitable sub regions for deriving pelagic system indicators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Black Sea ecosystem experienced severe eutrophication-related degradation during the 1970s and 1980s. However, in recent years the Black Sea has shown some signs of recovery which are often attributed to a reduction in nutrient loading. Here, SeaWiFS chlorophyll a (chl a), a proxy for phytoplankton biomass, is used to investigate spatio-temporal patterns in Black Sea phytoplankton dynamics and to explore the potential role of climate in the Black Sea's recovery. Maps of chl a anomalies, calculated relative to the 8 year mean, emphasize spatial and temporal variability of phytoplankton biomass in the Black Sea, particularly between the riverine-influenced Northwest Shelf and the open Black Sea. Evolution of phytoplankton biomass has shown significant spatial variability of persistence of optimal bloom conditions between three major regions of the Black Sea. With the exception of 2001, chl a has generally decreased during our 8 year time-series. However, the winter of 2000–2001 was anomalously warm with low wind stress, resulting in reduced vertical mixing of the water column and retention of nutrients in the photic zone. These conditions were associated with anomalously high levels of chl a throughout much of the open Black Sea during the following spring and summer. The unusual climatic conditions occurring in 2001 may have triggered a shift in the Black Sea's chl a regime. The long-term significance of this recent shift is still uncertain but illustrates a non-linear response to climate forcing that makes future ecosystem changes in the pelagic Black Sea ecosystem difficult to predict.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1980s, a rapid increase in the Phytoplankton Colour Index (PCI), a semiquantitative visual estimate of algal biomass, was observed in the North Sea as part of a regionwide regime shift. Two new data sets created from the relationship between the PCI and SeaWiFS chlorophyll a (Chl a) quantify differences in the previous and current regimes for both the anthropogenically affected coastal North Sea and the comparatively unaffected open North Sea. The new regime maintains a 13% higher Chl a concentration in the open North Sea and a 21% higher concentration in coastal North Sea waters. However, the current regime has lower total nitrogen and total phosphorus concentrations than the previous regime, although the molar N: P ratio in coastal waters is now well above the Redfield ratio and continually increasing. Besides becoming warmer, North Sea waters are also becoming clearer (i.e., less turbid), thereby allowing the normally light-limited coastal phytoplankton to more effectively utilize lower concentrations of nutrients. Linear regression analyses indicate that winter Secchi depth and sea surface temperature are the most important predictors of coastal Chl a, while Atlantic inflow is the best predictor of open Chl a; nutrient concentrations are not a significant predictor in either model. Thus, despite decreasing nutrient concentrations, Chl a continues to increase, suggesting that climatic variability and water transparency may be more important than nutrient concentrations to phytoplankton production at the scale of this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in phytoplankton dynamics influence marine biogeochemical cycles, climate processes, and food webs, with substantial social and economic consequences. Large-scale estimation of phytoplankton biomass was possible via ocean colour measurements from two remote sensing satellites – the Coastal Zone Color Scanner (CZCS, 1979-1986) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 1998-2010). Due to the large gap between the two satellite eras and differences in sensor characteristics, comparison of the absolute values retrieved from the two instruments remains challenging. Using a unique in situ ocean colour dataset that spans more than half a century, the two satellite-derived chlorophyll-a (Chl-a) eras are linked to assess concurrent changes in phytoplankton variability and bloom timing over the Northeast Atlantic Ocean and North Sea. Results from this unique re-analysis reflect a clear increasing pattern of Chl-a, a merging of the two seasonal phytoplankton blooms producing a longer growing season and higher seasonal biomass, since the mid-1980s. The broader climate plays a key role in Chl-a variability as the ocean colour anomalies parallel the oscillations of the Northern Hemisphere Temperature (NHT) since 1948.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.