940 resultados para Chemically synthesized


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study dye sensitized solar cells (DSSCs) have been fabricated with a tri-layer photo anode consisting of hydrothermally prepared titania nano tubes (TNT) having a diameter of 9-10 nm and length of several micrometers as outer layer, P25 TiO2 powder as transparent light absorbing middle layer and a compact TiO2 inner layer to improve the adhesion of different layers on a transparent conducting oxide coated substrate. In comparison to cells fabricated using TNTs or P25 alone, the tri-layer DSSCs exhibit an enhanced efficiency of 7.15% with a current density of 17.12 mA cm(-2) under AM 1.5 illumination. The enhancement is attributed to the light scattering generated by TNTs aggregates, reduction in electron transport resistance at the TiO2/dye/electrolyte interface and an improvement in electron life-time. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodized nanotubular and nanoporous zirconia membranes are of interest for applications involving elevated temperatures in excess of 400 degrees C, such as templates for the synthesis of nanostructures, catalyst supports, fuel cells and sensors. Thermal stability is thus an important attribute. The study described in this paper shows that the as-anodized nanoporous membranes can withstand more adverse temperature-time combinations than nanotubular membranes. Chemical treatment of the nanoporous membranes was found to further enhance their thermal stability. The net result is an enhancement in the limiting temperature from 500 degrees C for nanotubular membranes to 1000 degrees C for the chemically treated nanoporous membranes. The reasons for membrane degradation on thermal exposure and the mechanism responsible for retarding the same are discussed within the framework of the theory of thermal grooving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered LiNi0.8Co0.2O2 crystallizing in R (3) over barm space group is synthesized by decomposing the constituent metal-nitrate precursors. Oxidizing nature of metal nitrates stabilizes nickel in +3 oxidation state, enabling a high degree of cation ordering in the layered LiNi0.8Co0.2O2. The powder sample characterized by XRD Rietveld refinement reveals <2% Li-Ni site exchange in the layers. Scanning electron microscopic studies on the as-synthesized LiNi0.8Co0.2O2 sample reflect well defined particles of cubic morphology with particle size ranging between 200 and 250 nm. Cyclic voltammograms suggest that LiNi0.8Co0.2O2 undergoes phase transformation on first charge with resultant phase being completely reversible in subsequent cycles. The first-charge-cycle phase transition is further supported by impedance spectroscopy that shows substantial reduction in resistance during initial de-intercalation. Galvanostatic charge-discharge cycles reflect a first-discharge capacity of 184 mAh g(-1) which is stabilized at 170 mAh g(-1) over 50 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poorly crystalline mesoporous MnO2, which is suitable for supercapacitor studies, is synthesized from neutral KMnO4 aqueous solution by hydrothermal route. But it requires a high temperature (180 A degrees C) and also a long reaction time (24 h). Addition of a tri-block copolymer, namely, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123), which is generally used as a soft template for the synthesis of nano-structured porous materials, reduces the hydrothermal temperature to 140 A degrees C and also reaction time to 2 h. When the reaction time is increased, the product morphology changes from nanoparticles to nanorods with a concomitant decrease in BET surface area. Also, the product tends to attain crystallinity. The electrochemical capacitance properties of MnO2 synthesized under varied hydrothermal conditions are studied in 0.1 M Na2SO4 electrolyte. A specific capacitance of 193 F g(-1) is obtained for the mesoporous MnO2 sample consisting of nanoparticle and nanorod mixed morphology synthesized in 6 h using P123 at 140 A degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hg0.2Cd0.8Te nanorods were synthesized via solvothermal route using an air-stable Na2Te-O-3. The structural and morphological studies were done by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The diameters of the nanorods were found to be 20-50 nm. The growth of the nanorods were facilitated due to the use of CTAB as surfactant. The temperature dependent photoluminescence (PL) studies between 10-300 K show three prominent PL bands in 0.5-0.7 eV and are attributed to defect centers. The features like temperature independent peak energy and quite sensitive PL intensity which shows a thermal quenching behavior indicate that the defects are related to the compositional disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic inactivation of Escherichia coil was studied with combustion synthesized TiO2 photocatalysts in the presence of visible light. A series of 400W lamps irradiating in the visible region of the solar spectrum was used. The effect of various parameters, such as catalyst loading, light intensity, presence of inorganic ions, addition of hydrogen peroxide and pH, on the photocatalytic inactivation of E. coil was investigated. Photolysis alone had a small effect on inactivation while the dark experiment resulted in no inactivation and Ag/TiO2 showed the maximum inactivation. At a catalyst loading of 0.25 g/L, all the combustion synthesized catalysts showed better inactivation of E. coil compared to commercial Degussa P-25 (DP-25) TiO2 catalyst. An improved inactivation was observed with increasing lamp intensity and addition of H2O2. A negative effect on inactivation was observed by addition of inorganic ions such as HCO3-, SO42-, Cl-, NO3-, Na+, K+ and Ca2+. The photocatalytic inactivation of E. coli remained unaltered at different pH of the solution. The inactivation of E. coli was modeled with power law kinetics and was observed to follow first order kinetics. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of interaction of tetracyanoethylene (TCNE) and tetrathia fulvalene (TTF) with boron- and nitrogen-doped graphene has been investigated by Raman spectroscopy. The G- and 2D bands of boron- and nitrogen-doped graphenes in the Raman spectra show significantly different changes on interaction with electron-donor and -acceptor molecules. Thus, tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) have different effects on the Raman spectra of boron- and nitrogen-doped graphenes. The changes in the Raman spectra brought about by electron-donor and -acceptor molecules can be understood in general terms on the basis of molecular charge transfer. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of chemical and thermal annealing techniques has been employed to synthesize a rarely reported nanocup structure of Mn doped ZnO with good yield. Nanocup structures are obtained by thermally annealing the powder samples consisting of nanosheets, synthesized chemically at room temperature, isochronally in a furnace at 200-500 degrees C temperature range for 2 h. Strong excitonic absorption in the UV and photoluminescence (PL) emission in UV-visible regions are observed in all the samples at room temperature. The sample obtained at 300 degrees C annealing temperature exhibits strong PL emission in the UV due to near-band-edge emission along with very week defect related emissions in the visible regions. The synthesized samples have been found to be exhibiting stable optical properties for 10 months which proved the unique feature of the presented technique of synthesis of nanocup structures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic activity of commercial titanium dioxide under UV and visible radiation was improved by composites of tungsten trioxide (WO3) with TiO2. WO3 was prepared by solution combustion synthesis and the mixed oxides/composites of WO3-TiO2 were prepared in different weight ratios (0, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1) by physical mixing. These catalysts were characterized by XRD, DRS, BET, SEM, TEM, pH drift method, TGA and photoluminescence. The photocatalytic activity varies with the WO3 loading in the composites. The optimum loading of WO3 in the composites was found to be 15 wt% for both UV and visible radiation. This loading showed faster dye degradation rate than commercial TiO2 (TiO2-C) and WO3 (WO3-C). The effect of initial concentrations of methylene blue (MB) and orange G (OG) and the effect of the functional group on dye degradation was studied with both anionic and cationic dyes with 15 wt% WO3-TiO2. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform La0.6Sr0.4MnO3 (LSMO) nanotubes of an average diameter 180 nm were synthesized by a modified sol-gel method employing nanochannel porous anodic alumina templates. The nanotubes were characterized chemically and structurally by XRD, SEM, EDX, and TEM. Postannealed (700 degrees C for 1 h hour) nanotubes were found to be polycrystalline from XRD and SAED studies. To get further insight into the nanotube structure, HRTEM studies were done, which revealed that obtained LSMO nanotubes were structurally constituted with nanoparticles of 3-12 nm size. These constituent nanoparticles were randomly aligned and self-knitted to build the nanotube wall. Investigation of magnetic properties at this structured nanoscale revealed remarkable irreversibility between the zero field cooling (ZFC) and field cooling (FC) magnetization curves accompanied with a peak in the ZFC curve indicating spin-glass-like behavior. Structural defects and compositional variations at surfaces and grain-boundaries of constituent nanoparticles might be responsible for this anomalous magnetic behavior.