977 resultados para Chemical and enzymatic hydrolysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pumpkin (Cucurbita maxima), popularly known as squash, is a widely grown vegetable in Brazil. In this study, pumpkin seed flours (PSF) with different granulometries were used: PSF 1 (medium granulometry) and PSF 2 (coarse granulometry) in the preparation of cereal bars (CB) with different combinations with brown oats. Five formulations were prepared: CB-1 (control - 25% brown oats and 0% PSF); CB-2 (12.5% PSF 1 and 12.5% brown oats); CB-3 (25% PSF 1 and 0% brown oats); CB-4 (12.5% PSF 2 and 12.5% brown oats); and CB-5 (25% PSF 2 and 0% brown oats). The acceptance test results were analyzed in a conventional preference mapping which indicated that the bars CB-2 and CB-5 received mostly the maximum hedonistic score. With the objective of developing a cereal bar replacing oats with PSF, the bars CB-2 and CB-5 were compared to the conventional bar CB-1. The cereal bars CB-2 and CB-5 showed an increase in crude protein (87.5% and 62.5%) and in dietary fiber (77% and 44%), respectively. These results allowed the classification of CB-2 and CB-5 as fiber sources; they can, therefore, be classified as light products according to the Brazilian legislation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pearl millet flour was utilized in kibbeh formulations instead of whole-wheat flour. Physicochemical properties, oxidation stability and sensorial characteristics of control kibbeh made with whole-wheat flour (CT) were compared with kibbehs prepared with millet flour (roasted or wet) and stored for 90 days (–18 °C). Kibbeh prepared with millet flour presented good oxidation stability (TBARS concentration). Baked kibbehs (with roasted millet flour) presented good acceptability and kibbeh samples did not differ significantly (p > 0.05) from the whole-wheat flour sample, when global appearance, texture and flavor were evaluated. Millet flour could be a suitable ingredient for kibbeh formulations, maintaining their nutritional value and sensorial quality in addition to being a gluten-free product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractThis study analyzed the addition of huitlacoche paste (HP) in baked tortilla chips (TC), evaluating its effects on functional, physicochemical and structural changes during processing. Two blue corn grains were nixtamalized, stone milled, air dried and milled to obtain flour; commercial blue corn flour (TM1) and commercial TC (TM2) were used as controls. Additions of 0, 3, 6 and 9% of HP were formulated; masas were prepared at 55% moisture content (MC), precooked and baked in an industrial machine. TC crispiness was influenced by grain characteristics and percentage of HP. Huitlacoche paste addition caused an increase in total dietary fiber (from 5.27 to 14.54%), total soluble phenolics content (from 17.52 to 37.60 mg GAE/100 g) and antioxidant capacity (from 6.74 to 7.98 μmol TE/g) in TC. Results suggest that tortilla chips added with huitlacoche can be an alternative to prepare this traditional edible fungus and produce healthier snacks, not fried and enriched with bioactive compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract This study evaluated the chemical and volatile composition of jujube wines fermented with Saccharomyces cerevisiae A1.25 with and without pulp contact and protease treatment during fermentation. Yeast cell population, total reducing sugar and methanol contents had significant differences between nonextracted and extracted wine. The nonextracted wines had significantly higher concentrations of ethyl 9-hexadecenoate, ethyl palmitate and ethyl oleate than the extracted wines. Pulp contact also could enhance phenylethyl alcohol, furfuryl alcohol, ethyl palmitat and ethyl oleate. Furthermore, protease treatment can accelerate the release of fusel oils. The first principal component separated the wine from the extracted juice without protease from other samples based on the higher concentrations of medium-chain fatty acids and medium-chain ethyl esters. Sensory evaluation showed pulp contact and protease could improve the intensity and complexity of wine aroma due to the increase of the assimilable nitrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The storage susceptibility of Bambara groundnut (B. G.) (Voandzeia Subterranean (L.) Thouars) to Callosobruchus maculatus and chemical and functional properties of 11 varieties form Far-North of Cameroon were investigate using standard analytical methods. Storage susceptibility shown that, after five months within treatment, C. maculatus destroy 10 to 50% of grains. The chemical characteristics of none attack grains of 11 varieties were range to 18.64 at 21.08%, 6.85 at 7.44%, 49.75 at 52.68% and to 6.05 at 7.55% respectively for protein, fat, starch and free carbohydrate. These chemical characteristics significantly (p < 0.05) decreases form attacks varieties. For the functional parameters, the none attacks grains was range of 130 at 135%, 19.15 at 20.91%, 18.20 at 21.13%, 2.76 at 3.21% and of 8.54 at 10.14% respectively for water capacity absorption, solubility index, gel length, ash and humidity. The results of this study indicated that storage susceptibility, chemical and functional properties of B. G. be dependant to the varieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was done to evaluate the physiological and enzymatic alterations in papaya (Carica papaya L.) seeds during storage period. Seeds were extracted from mature fruits of Formosa group papaya hybrid Tainung 01. The sarcotesta was removed by rubbing the seeds on a wire screen under running water and then dried to the moisture content (MC) of 5, 8 or 11% The seeds were packed in multilayer paper bags, polyethylene bags, aluminum foil pouch and metallic canisters and stored for 15 months under laboratory conditions. Seeds were evaluated, at three month interval, for MC, germination, and the activity of acid phosphotase (AP) and malate dehyrogenase (MDH) was evaluated with the use of amide gel (12%) electrophoresis. The fresh seeds had post-harvest dormancy, which was broken after six month storage. Independent of the package type, the seeds could be stored for 12 months with 8 or 11% MC under ambient conditions. There was no association between seed deterioration and alterations in AP and MDH activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of chemical and biological treatments on castor bean emergence, seedling vigor, dry matter production, and also the control of microorganisms associated with seeds of the AL Guarany 2002 and Lyra cultivars, was evaluated. The products tested were carbendazim + thiram, carboxin + thiram and a product based on Trichoderma. Total seed and seedling emergence were evaluated at 27 days after sowing whereas dry matter production was verified for plants removed 45 days after sowing. The Guarany 2002 AL cultivar had a higher incidence of microorganisms than the Lyra cultivar. The chemical treatment was 100% effective in controlling fungi but the biological treatment did not reduce microorganism incidence on the seeds. Chemical treatment resulted in plants with more dry matter and the best results were for carbendazim + thiram and carboxin + thiram at doses of 60 g + 140 g and 50 g + 50 g/100 kg of seeds, respectively. The carbendazim + thiram mixture was the only treatment which was statistically higher for total emergence whereas the biological treatment increased emergence only for the Lyra cultivar, thus demonstrating its lower efficiency. The importance of fungicides to control pathogens associated with seeds was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La fumée du tabac est un aérosol extrêmement complexe constitué de milliers de composés répartis entre la phase particulaire et la phase vapeur. Il a été démontré que les effets toxicologiques de cette fumée sont associés aux composés appartenant aux deux phases. Plusieurs composés biologiquement actifs ont été identifiés dans la fumée du tabac; cependant, il n’y a pas d’études démontrant la relation entre les réponses biologiques obtenues via les tests in vitro ou in vivo et les composés présents dans la fumée entière du tabac. Le but de la présente recherche est de développer des méthodes fiables et robustes de fractionnement de la fumée à l’aide de techniques de séparation analytique et de techniques de détection combinés à des essais in vitro toxicologiques. Une étude antérieure réalisée par nos collaborateurs a démontré que, suite à l’étude des produits de combustion de douze principaux composés du tabac, l’acide chlorogénique s’est avéré être le composé le plus cytotoxique selon les test in vitro du micronoyau. Ainsi, dans cette étude, une méthode par chromatographie préparative en phase liquide a été développée dans le but de fractionner les produits de combustion de l’acide chlorogénique. Les fractions des produits de combustion de l’acide chlorogénique ont ensuite été testées et les composés responsables de la toxicité de l’acide chlorogénique ont été identifiés. Le composé de la sous-fraction responsable en majeure partie de la cytoxicité a été identifié comme étant le catéchol, lequel fut confirmé par chromatographie en phase liquide/ spectrométrie de masse à temps de vol. Des études récentes ont démontré les effets toxicologiques de la fumée entière du tabac et l’implication spécifique de la phase vapeur. C’est pourquoi notre travail a ensuite été focalisé principalement à l’analyse de la fumée entière. La machine à fumer Borgwaldt RM20S® utilisée avec les chambres d’exposition cellulaire de British American Tobacco permettent l’étude in vitro de l’exposition de cellules à différentes concentrations de fumée entière du tabac. Les essais biologiques in vitro ont un degré élevé de variabilité, ainsi, il faut prendre en compte toutes les autres sources de variabilité pour évaluer avec précision la finalité toxicologique de ces essais; toutefois, la fiabilité de la génération de la fumée de la machine n’a jamais été évaluée jusqu’à maintenant. Nous avons donc déterminé la fiabilité de la génération et de la dilution (RSD entre 0,7 et 12 %) de la fumée en quantifiant la présence de deux gaz de référence (le CH4 par détection à ionisation de flamme et le CO par absorption infrarouge) et d’un composé de la phase particulaire, le solanesol (par chromatographie en phase liquide à haute performance). Ensuite, la relation entre la dose et la dilution des composés de la phase vapeur retrouvée dans la chambre d’exposition cellulaire a été caractérisée en utilisant une nouvelle technique d’extraction dite par HSSE (Headspace Stir Bar Sorptive Extraction) couplée à la chromatographie en phase liquide/ spectrométrie de masse. La répétabilité de la méthode a donné une valeur de RSD se situant entre 10 et 13 % pour cinq des composés de référence identifiés dans la phase vapeur de la fumée de cigarette. La réponse offrant la surface maximale d’aire sous la courbe a été obtenue en utilisant les conditions expérimentales suivantes : intervalle de temps d’exposition/ désorption de 10 0.5 min, température de désorption de 200°C pour 2 min et température de concentration cryogénique (cryofocussing) de -75°C. La précision de la dilution de la fumée est linéaire et est fonction de l’abondance des analytes ainsi que de la concentration (RSD de 6,2 à 17,2 %) avec des quantités de 6 à 450 ng pour les composés de référence. Ces résultats démontrent que la machine à fumer Borgwaldt RM20S® est un outil fiable pour générer et acheminer de façon répétitive et linéaire la fumée de cigarette aux cultures cellulaires in vitro. Notre approche consiste en l’élaboration d’une méthodologie permettant de travailler avec un composé unique du tabac, pouvant être appliqué à des échantillons plus complexes par la suite ; ex : la phase vapeur de la fumée de cigarette. La méthodologie ainsi développée peut potentiellement servir de méthode de standardisation pour l’évaluation d’instruments ou de l’identification de produits dans l’industrie de tabac.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

School of Environmental Studies, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physico-chemical characterization of DY203/V2O5 systems prepared through wet impregnation method has been carried out using various techniques like EDX, XRD, FTIR. thermal studies, BET surface area, pore volume and pore size distribution analysis. The amount of vanadia incorporated has been found to influence the surface properties of dysprosia. The spectroscopic results combining with X-ray analysis reveal that vanadia species exist predominantly as isolated amorphous vanadyl units along with crystalline dysprosium orthovanadate. Basicity studies have been conducted by adsorption of electron acceptors and acidity and acid strength distribution by temperature programmed desorption of ammonia. Cyclohexanol decomposition has been employed as a chemical probe reaction to examine the effect of vanadia on the acid base property of Dy2O3. Incorporation of vanadia titrates thc Lewis acid and base sites of Dy2O3, while an enhancement of Bronsted acid sites has been noticed. Data have been correlated with the catalytic activity of these oxides towards the vapour phase methylation of phenol

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study on natural antioxidants, the focus has been kept mainly on oil seeds, especially sesame and its by-products. Sesame, which has been under cultivation in India for centuries is called the 'Queen of oil seed crops' because of the high yield of oil obtained and the nutritional qualities of the seed, oil, and meal. Though India is the largest producer of sesame in the world, research on the various health benefits of sesame has been carried out by Japanese Sesame has an important place in the foods and tradit..ional medicine of India from time immemorial. Foreseeing the potential of sesame and its byproducts as an important antioxidant source and its availability in bulk, the present study was focussed on Sesamum species. There are not many reports on the wild species of Sesamum in India, especially of the Kerala region. Hence, in the present study we also included antioxidants of Sesamurnrnalabaricumdistributed throughout the coastal region.The important characteristics of sesame are attributed to the presence of the umquc compounds lignans. Lignans arc a group of natural products of phenyl propanoid ongm, whieh are widely distributed in nature. They display important physiological functions in plants, in human nutrition and medicine, given their extensive health promotive and curative properties. Much interest has been focussed on their effectiveness as antineoplastic agents and research in this area has revealed several modes of action by which they can regulate the growth of mammalian cells. Sesame is an important source of furofuran lignans, of which sesamin and the rare oxygenated derivative sesamoIin are the most abundant. Others include sesamol and glucosides of lignans. Sesarnin and episesamin are reported to have hypocholesterolemic effect, suppressive effect on chemically induced cancer, alleviation of allergy symptoms etc. Sesamol, sesamolin and the lignan glycosides are reported to inhibit lipid peroxidation. Present investigation on sesame and its byproducts have been carried out to explore the possibility of developing a natural antioxidant extract from available resources to be used as a substitute to synthetic ones in vegetable oils and foods. Preliminary analysis showed that sesame cake, a byproduct could still be utilized as a major source of lignans. Sesame cake, which is now used only as a cattlefeed, can be better utilized in the form of a valuable antioxidant source. The present study explains the development of a feasible process for the extraction of antioxidant compounds from sesame cake. The antioxidant extract so prepared from sesame cake has been tested for vegetable oil protection and is found to be effective at low concentration. In addition, studies also include the antioxidant, radical scavenging, anticancer, mosquitocidal and pesticidal activities of extract and individual compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucoamylase from Aspergillus Niger was immobilized on montmorillonite clay (K-10) by two procedures, adsorption and covalent binding. The immobilized enzymes were characterized using XRD, surface area measurements and 27Al MAS NMR and the activity of the immobilized enzymes for starch hydrolysis was tested in a fixed bed reactor (FBR). XRD shows that enzyme intercalates into the inter-lamellar space of the clay matrix with a layer expansion up to 2.25 nm. Covalently bound glucoamylase demonstrates a sharp decrease in surface area and pore volume that suggests binding of the enzyme at the pore entrance. NMR studies reveal the involvement of octahedral and tetrahedral Al during immobilization. The performance characteristics in FBR were evaluated. Effectiveness factor (η) for FBR is greater than unity demonstrating that activity of enzyme is more than that of the free enzyme. The Michaelis constant (Km) for covalently bound glucoamylase was lower than that for free enzyme, i.e., the affinity for substrate improves upon immobilization. This shows that diffusional effects are completely eliminated in the FBR. Both immobilized systems showed almost 100% initial activity after 96 h of continuous operation. Covalent binding demonstrated better operational stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International School of Photonics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.