940 resultados para Charity organization.
Resumo:
The present work combines two rapidly growing research areas-functional supramolecular gels and lanthanide based hybrid materials. Facile hydrogel formation from several lanthanide(III) cholates has been demonstrated. The morphological and mechanical properties of these cholate gels were investigated by TEM and rheology. The hydrogel matrix was subsequently utilized for the sensitization of Tb(III) by doping a non-coordinating chromophore, 2,3-dihydroxynaphthalene (DHN), at micromolar concentrations. In the mixed gels of Tb(III)-Eu(III), an energy transfer pathway was found to operate from Tb(III) to Eu(III) and by utilizing this energy transfer, tunable multiple-color luminescent hydrogels were obtained. The emissive properties of the hydrogels were also retained in the xerogels and their suspensions in n-hexane were used for making luminescent coating on glass surface.
Resumo:
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or ``sequence conservation'' as the basis for their understanding. Recently ``interaction energy'' based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the ``interaction conservation'' viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.
Resumo:
The effectiveness of the last-level shared cache is crucial to the performance of a multi-core system. In this paper, we observe and make use of the DelinquentPC - Next-Use characteristic to improve shared cache performance. We propose a new PC-centric cache organization, NUcache, for the shared last level cache of multi-cores. NUcache logically partitions the associative ways of a cache set into MainWays and DeliWays. While all lines have access to the MainWays, only lines brought in by a subset of delinquent PCs, selected by a PC selection mechanism, are allowed to enter the DeliWays. The PC selection mechanism is an intelligent cost-benefit analysis based algorithm that utilizes Next-Use information to select the set of PCs that can maximize the hits experienced in DeliWays. Performance evaluation reveals that NUcache improves the performance over a baseline design by 9.6%, 30% and 33% respectively for dual, quad and eight core workloads comprised of SPEC benchmarks. We also show that NUcache is more effective than other well-known cache-partitioning algorithms.
Resumo:
Dominance and subordinate behaviors are important ingredients in the social organizations of group living animals. Behavioral observations on the two eusocial species Ropalidia marginata and Ropalidia cyathiformis suggest varying complexities in their social systems. The queen of R. cyathiformis is an aggressive individual who usually holds the top position in the dominance hierarchy although she does not necessarily show the maximum number of acts of dominance, while the R. marginata queen rarely shows aggression and usually does not hold the top position in the dominance hierarchy of her colony. In R. marginata, more workers are involved in dominance-subordinate interactions as compared to R. cyathiformis. These differences are reflected in the distribution of dominance-subordinate interactions among the hierarchically ranked individuals in both the species. The percentage of dominance interactions decreases gradually with hierarchical ranks in R. marginata while in R. cyathiformis it first increases and then decreases. We use an agent-based model to investigate the underlying mechanism that could give rise to the observed patterns for both the species. The model assumes, besides some non-interacting individuals, the interaction probabilities of the agents depend on their pre-differentiated winning abilities. Our simulations show that if the queen takes up a strategy of being involved in a moderate number of dominance interactions, one could get the pattern similar to R. cyathiformis, while taking up the strategy of very low interactions by the queen could lead to the pattern of R. marginata. We infer that both the species follow a common interaction pattern, while the differences in their social organization are due to the slight changes in queen as well as worker strategies. These changes in strategies are expected to accompany the evolution of more complex societies from simpler ones.
Resumo:
In self-organized sliding processes, the surfaces align to each other during sliding. This alignment leads to a more ordered contact state and significantly influences the frictional behavior. To understand the self-organization sliding processes, experiments were conducted on a pin-on-plate reciprocating sliding tester for various numbers of cycles. In the experiments, soft magnesium pins were slid against hard steel plates of various surface textures (undirectional, 8-ground, and random). Experimental results showed that the transfer layer formation on the steel plates increased with increasing number of cycles for all surfaces textures under both dry and lubricated conditions. The friction also increased with the number of cycles under dry conditions for all of the textures studied. During lubricated conditions, the friction decreased for unidirectional and 8-ground surfaces and increased for random surfaces with the number of cycles. Furthermore, the friction and transfer layer formation depend on the surface textures under both dry and lubricated conditions during the first few sliding cycles. Later on, it is less dependent of surface textures. The variation in the coefficient of friction under both dry and lubrication conditions were attributed to the self-organization process that occurred during repeated sliding.
Resumo:
Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Two new anionic inorganic-organic hybrid compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5), I, and H3O](2)Mn-7(mu(3)-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8), II have been prepared by employing mild solvothennal methods. Both the compounds have three-dimensionally extended structures formed by Mn-6 and Mn-7 clusters, respectively. The connectivity between Mn-6 and Mn-7 clusters and 4,4'-sulfonyldibenzoic acid anions (SDBA(2-)) results in a six connected pcu network in I and an eight connected bcu network in II. The presence of hydronium ion (H-3(O+)) along with the solvent molecules in the channels of both the compounds suggested proton conduction in the solids. Proton conductivity studies gave values of similar to 3 x 10(-4) Omega(-1) cm(-1) 98% relative humidity in both the compounds. The high activation energies indicate a vehicle mechanism in the compounds I and II. Magnetic studies indicate antiferromagnetic behavior in both the compounds.
Resumo:
Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.
Resumo:
The interfacing of aromatic molecules with biomolecules to design functional molecular materials is a promising area of research. Intermolecular interactions determine the performance of these materials and therefore, precise control over the molecular organization is necessary to improve functional properties. Herein we describe the tunable biomimetic molecular engineering of a promising n-type organic semiconductor, naphthalene diimide (NDI), in the solid state by introducing minute structural mutations in the form of amino acids with variable Ca-functionality. For the first time we could achieve all four possible crystal packing modes, namely cofacial, brickwork, herringbone and slipped stacks of the NDI system. Furthermore, amino acid conjugated NDIs exhibit ultrasonication induced organogels with tunable visco-elastic and temperature responsive emission properties. The amino acid-NDI conjugates self-assemble into 0D nanospheres and 1D nanofibers in their gel state while the ethylamine-NDI conjugate forms 2D sheets from its solution. Photophysical studies indicated the remarkable influence of molecular ordering on the absorption and fluorescence properties of NDIs. Interestingly, the circular dichroism (CD) and X-ray diffraction (XRD) studies revealed the existence of helical ordering of NDIs in both solution and solid state. The chiral amino acids and their conformations with respect to the central NDI core are found to influence the nature of the helical organization of NDIs. Consequently, the origin of the preferential handedness in the helical organization is attributed to transcription of chiral information from the amino acid to the NDI core. On account of these unique properties, the materials derived from NDI-conjugates might find a wide range of future interdisciplinary applications from materials to biomedicine.
Resumo:
Supramolecular organization of a metal complex may significantly contribute to the magnetization dynamics of mononuclear SMMs. This is illustrated for a heptacoordinated Fe(II) complex with rather moderate Ising-type anisotropy for which a slow magnetization relaxation with significant energy barrier was reached when this complex was properly organized in the crystal lattice. Incidentally, it is the first example of single-ion magnet behaviour of Fe(II) in a pentagonal bipyramid surrounding.
Resumo:
Eutectic growth is an interesting example for exploring the topic of pattern-formation in multi-phase systems, where the growth of the phases is coupled with the diffusive transport of one or more components in the melt. While in the case of binary alloys, the number of possibilities are limited (lamellae, rods, labyrinth etc.), their number rapidly increases with the number of components and phases. In this paper, we will investigate pattern formation during three-phase eutectic solidification using a state-of-the art phase-field method based on the grand-canonical density formulation. The major aim of the study is to highlight the role of two properties, which are the volume fraction of the solid phases and the solid-liquid interfacial energies, in the self-organization of the solid phases during directional growth. Thereafter, we will show representative phase-field simulations of a micro-structure in a real alloy (Ag-Al-Cu) using an asymmetric phase diagram as well as interfacial properties.
Resumo:
Achieving control on the formation of different organization states of magnetic nanoparticles is crucial to harness their organization dependent physical properties in desired ways. In this study, three organization states of iron oxide nanoparticles (gamma-Fe2O3), defining as (i) assembly (ii) network aggregate and (iii) cluster, have been developed by simply changing the solvent evaporation conditions. All three systems have retained the same phase and polydispersity of primary particles. Magnetic measurements show that the partial alignment of the easy axes of the particles in the network system due to the stacking aggregation morphology can result in significant enhancement of the coercivity and remanence values, while the opposite is obtained for the cluster system due to the random orientation of easy axes. Partial alignment in the aggregate system also results in noticeable non -monotonic field dependence of ZFC peak temperature (TpeaB). The lowest value of the blocking temperature (TB) for the cluster system is related to the lowering of the effective anisotropy due to the strongest demagnetizing effect. FC (Field cooled) memory effect was observed to be decreasing with the increasing strength of dipolar interaction of organization states. Therefore, the stacking aggregation and the cluster formation are two interesting ways of magnetic nanoparticles organization for modulating collective magnetic properties significantly, which can have renewed application potentials from recording devices to biomedicine. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dlislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T(m). The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation.
Resumo:
La Guerra de la Independencia generó miseria y ruina, aumentando la pobreza material y el descenso del poder adquisitivo de la población. Fruto de este negativo contexto económico los ayuntamientos solamente pudieron destinar una décima parte de su presupuesto a la beneficencia. Los efectos de la contienda bélica contra Napoleón también afectaron a la Iglesia, institución que tradicionalmente mediante diversos organismos eclesiásticos tuvo que atender las enormes carestías sociales que asolaban al pueblo, como por ejemplo, otorgar limosna, atender a los enfermos en los hospitales, acoger a los huérfanos en los hospicios o educar a los más jóvenes. En el caso de Lleida durante el régimen liberal cabe destacar la organización de diversas juntas de caridad, de sanidad y de beneficencia destinadas a socorrer a los más necesitados.
Resumo:
Resumen: El artículo analiza el principio de subsidiariedad en la dirección de personas y gestión intra-empresa en base a la aplicación propuesta en el documento pontificio La vocación del líder empresarial: una reflexión. En primer lugar, analiza a la empresa y al líder empresarial como agentes sociales que deben practicar una caridad inteligente que contribuya al bien común. Luego, se centra en el diseño organizacional, y en su sistema de incentivos y políticas corporativas y en el debate acerca de la posibilidad de atribuir o no responsabilidad moral a la empresa en tanto grupo humano organizado. La autora postula que si bien la organización actúa muchas veces como condicionante de la libertad de sus integrantes, es importante destacar que esto no debe ser determinante, y que un verdadero líder debe actuar regido por el principio de subsidiariedad