527 resultados para Chamaecrista flexuosa


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 136 m of calcareous oozes recovered in Hole 810C span the interval from upper Maastrichtian to middle Pleistocene. Three major hiatuses interrupt the sequence, with the topmost part of the Maastrichtian through the entire lower Paleocene, most of the lower Eocene, and the entire middle Eocene through most of the middle Miocene missing. Severe reworking and displacement affected the lower part of the succession from the Maastrichtian through the middle Miocene. Reworking and displacement gradually decreased in the upper portion. Calcareous nannofossil biostratigraphy enabled us to calibrate precisely the nearly complete magnetic reversal sequence of the Pliocene to the late Pleistocene. Two minor hiatuses detected by calcareous nannofossils across the Pliocene/Pleistocene boundary and in the upper lower Pleistocene, respectively, resulted in shortening of the Olduvai and Jaramillo Events within the Matuyama Chron of the magnetic reversal sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the planktonic foraminifer biostratigraphy of the sites drilled during Ocean Drilling Program Leg 124 in the Celebes and Sulu Seas. It discusses preservation of foraminifers in pelagic sediments and in calcareous turbidites. In the Celebes Sea, pelagic carbonates are only found in the Eocene and Oligocene at Site 770. The faunas are poorly preserved due to severe dissolution and offer little biostratigraphic detail. In the Sulu Sea, pelagic carbonates are found in the upper Pliocene and Pleistocene at Sites 768 and 769 and throughout the recovered sequence at the shallower Site 771. The foraminifer faunas from these sediments allow for recognition of most standard zones. Variations in preservation of pelagic foraminifer faunas with time are due to changes in the depth of the lysocline. Shifts to improved preservation at Sites 768 and 769 are synchronous in the upper Pliocene/Pleistocene and may be related to global sea-level cycles. Planktonic foraminifers are also abundant in calcareous turbidites, which were deposited in both basins from the late Miocene onward. However, the turbidites are fine-grained, and biostratigraphic marker species are absent as a result of size-sorting during transport. In the Celebes Sea, shelf-derived material was a major component of early-late Miocene and middle Pliocene to early Pleistocene turbidites. Changes in the composition of the turbidites may correspond to global sea-level changes. In the Sulu Sea, a shift from shelf-derived material in Pliocene calcareous turbidites to a pelagic source in the Pleistocene may be related to subsidence of the Cagayan Ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of the species composition and ecology of diatoms of modern bottom sediments in water bodies of arctic polygonal tundra in three subregions of North Yakutiya has been carried out. As a result, 161 taxons of diatoms were determined; the determinant role of the depth, conductivity, pH of the water, and geographic latitude in their distribution was confirmed, and two complexes of species with respect to the leading abiotic factors were distinguished. The diatoms of the first complex prefer shallow water bodies of high latitudes with neutral and slightly alkaline water and relatively high conductivity. The second complex is confined to the water bodies of lower latitudes with small conductivity, as well as neutral and slightly acidic water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six soft sediment cores, up to and over 9 m in length, and additional surface samples were selected for study of their planktonic foraminifera to provide information on the Holocene and Pleistocene stratigraphy of the West African continental margin south of the present boundary of the Sahara. The material was collected by the German research vessel "Meteor" during Cruise 25 in 1971. The residues larger than 160 microns determined, counted and statistically evaluated. Stratigraphical correlations with trans- Antlantic regions are given by occurrence of Truncorotalidoides hexagonus and Globorotalia tumidula flexuosa which mark the last interglacial stage. According to the climatic record the two deep-sea cores extend down to the V-zone, considered here as equivalent to the Mindel-Riss-interglacial time, as there are three distinctly warm and two cold periods indicated in the cores by planktonic foraminiferal faunas. Z-zone = Holocene is present in all cores, Y-zone = Wuermian glacial can be divided into five section, three cold and two warm stages; the X-zone can be divided into three warm stages, separated into two cool periods. The earliest warm stage is indicated to be the warmest one. There are excellent correlations to the Camp century ice core from Greenland, to the Mediterranean, to the Carribean and to the tropical Atlantic as well as to the Barnados stage. The W-zone was correlated to the Riss-glacial. V-zone is a warm period, the upper limit of which being not sufficiently defined, which contains also some cool sections. Increasing sedimentation rates from the deep-sea to the upper slope reveal climatic and regional details in Holocene and Late Pleistocene history of the continental margin. These were based mainly on different parameters of planktonic foraminiferal thanatocoenoses which are the main components of the size fraction >160 microns of the pelagic core. They become incerasingly diluted by other faunal and terrigenous components with decreasing slope depths. Estimates of absolute abundances, ranging from 25000 specimens/gm of sediment in the deep sea to less than 100, indicate various sedimentary processes at the continental margin. An ecological correlation by dominant species is possible. Readily computed temperature indices of different scales are presented which indicate, for instance, three distinctly cold sections within the last glacial and seven warm sections within the last interglacial lime. These are used for estimates of sedimentation rates. During cold periods sedimentation rates are higher than during warmer periods. Stratigraphic correlation and faunal record, combined with absolute abundances and sedimentation rates, indicated that in the deep sea turbidity currents not only cause high sedimentation rates for short periods of time, but also that material is occasionally eroded. Effects of upwelling may be detected in the surfacc sediment samples as well as in late Pleistocene and early Holocene samples of the slope by planktonic foraminiferal data which are not influenced by sedimentary processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent Pan-Arctic shrub expansion has been interpreted as a response to a warmer climate. However, herbivores can also influence the abundance of shrubs in arctic ecosystems. We addressed these alternative explanations by following the changes in plant community composition during the last 10 years in permanent plots inside and outside exclosures with different mesh sizes that exclude either only reindeer or all mammalian herbivores including voles and lemmings. The exclosures were replicated at three forest and tundra sites at four different locations along a climatic gradient (oceanic to continental) in northern Fennoscandia. Since the last 10 years have been exceptionally warm, we could study how warming has influenced the vegetation in different grazing treatments. Our results show that the abundance of the dominant shrub, Betula nana, has increased during the last decade, but that the increase was more pronounced when herbivores were excluded. Reindeer have the largest effect on shrubs in tundra, while voles and lemmings have a larger effect in the forest. The positive relationship between annual mean temperature and shrub growth in the absence of herbivores and the lack of relationships in grazed controls is another indication that shrub abundance is controlled by an interaction between herbivores and climate. In addition to their effects on taller shrubs (> 0.3 m), reindeer reduced the abundance of lichens, whereas microtine rodents reduced the abundance of dwarf shrubs (< 0.3 m) and mosses. In contrast to short-term responses, competitive interactions between dwarf shrubs and lichens were evident in the long term. These results show that herbivores have to be considered in order to understand how a changing climate will influence tundra ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One hundred and sixty core samples were analyzed from Hole 832B to evaluate planktonic foraminiferal datum levels, and to zone and correlate the borehole succession. A total of 32 biostratigraphic events were recognized in the interval from Core 134-832B-59R through 134-832B-73R (702.49 through 846.4 meters below seafloor [mbsf]). These include 17 first appearance datum levels (FAD), 10 last appearance datum levels (LAD), and 5 coiling-change events in trochospiral species. The studied succession has been subdivided into nine planktonic foraminiferal zones (viz. downsequence N.22, N.21, N.20, N.19, N.18, N.17B, N.17A-N.16, N.15, N.8). The zonal index species occur in the expected stratigraphic order for zonal correlation, but some of the zonal boundaries may be diachronous compared to other localities in the western Pacific region. The FAD of Globorotalia (Truncorotalia) truncatulinoides (d' Orbigny) at 714.10 mbsf defines the boundary between the Zone N.22 and N.21; the boundary between Zones N.21 and N.20 at 741.73 mbsf is marked by the FAD of Globorotalia (Truncorotalia) tosaensis Takayanagi and Saito. The lower boundary of Zone N.20 is placed at 747.65 mbsf, based on the FAD of Globorotalia (Truncorotalia) crassaformis s.s. (Galloway and Wissler); the FAD of Sphaeroidinella dehiscens (Parker and Jones) at 756.61 mbsf defines the boundary between Zones N.18 and N.19. The FAD of Globorotalia (Globorotalia) tumida tumida (Brady) at 811.15 mbsf marks the boundary between Zones N.18 and N.17B. The boundary between Zones N.17B and N.17Ais placed at 843.52 mbsf, based on the FAD of Pulleniatina primalis Banner and Blow. A change in depositional conditions occurs at 846.4 mbsf just below the Zone N.17B lower boundary and is marked by the first appearance of abundant planktonic foraminifers in the region. The interval between 849.13 and 856.1 mbsf is placed in undifferentiated Zones N.17A and N.16, based on the rare occurrence of Neogloboquadrina acostaensis (Blow). The sparsely fossiliferous volcanic sandstone unit between 934.19 and 955.67 mbsf is positioned within Zone N.15 based on the presence of Globigerina (Zeaglobigerina) nepenthes Todd and Globigerinoides (Zeaglobigerina) druryi Arkers, and absence of N. acostaensis and Globorotalia (Jenkinsella) siakensis LeRoy. An unconformity between 955.67 and 971.80 mbsf may explain the absence of Zones N.14 through N.9. Basal Zone N.8 is recognized at 971.80 to 1008.60 mbsf by the presence of Globigerinoides sicanus De Stefani and the absence of Praeorbulina and Orbulina spp. The age of the succession between 702.49 and 1008.6 mbsf extends from the latest Pliocene or earliest Pleistocene (Zone N.22) to the earliest middle Miocene (Zone N.8). Among the datum levels evaluated here, the following events are considered to be the most reliable for time correlation in the studied region: the FADs of G. (T.) truncatulinoides, G. (T.) tosaensis, G. (T.) crassaformis, S. dehiscens, G. conglobatus (Brady), G. (G.) tumida tumida, and P. primalis; and the LADs of Globorotalia (Menardella) multicamerata Cushman and Jarvis, and Dentoglobigerina altispira altispira (Cushman and Jarvis). Application of a chronometric scale to part of the succession, suggests that the interval of calcareous sediment between 702.49 and 846.4 mbsf accumulated at about 30 m/m.y.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleotemperature curves were drawn from oxygen-isotope ratios in CaCO3 of planktonic foraminiferal tests and by the micropaleontological method using quantitative relationships of their species. Two series of curves yield similar results. These data confirm that isotope composition of oxygen reflects primarily temperature, and not isotope composition in ocean water. Temperature of the upper layer of ocean water increased from north to south both during the last two glaciations and in the interglacials. All three sediment cores collected from different latitudes show approximately the same amplitudes of fluctuation of mean annual temperature during times of their accumulation, as determined independently by different methods; these amplitudes are estimated as 5-7°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution history of paleoceanographic changes in the subpolar waters of the southern margin of the Subtropical Convergence Zone during the last 130 kyr, is present in foraminiferal assemblages of DSDP Site 594. The foraminifera indicate that sea-surface temperatures during the Last Interglacial Climax were warmer than today, and that between substage 5d through to the end of isotope stage 2, temperatures were mostly cooler than Holocene temperatures. The paleotemperatures suggest that (1) the Subtropical Convergence was located over the site during substage 5e, later moving further north, then moving southwards to near the site during the Holocene, and (2) the Polar Front was positioned over the Site during glacial stages 6, 4, 2 and possibly parts of stage 3. Several major events are indicated by the nannofloral assemblages during these large changes in sea-surface temperature and associated reorganization of ocean circulation. First, the time-progressive trends between E. huxleyi and medium to large Gephyrocupsa are unique to this site, with E. huxleyi dominating over medium Gephyrocupsa during stages 5c-a, middle part of stage 4 and after the middle point of stage 3. This unusual trend may (at least partly) be caused by the shift of the Polar Front across the site. Second, upwelling flora (E. huxleyi and small placoliths) increase in abundance during stages 1, 3 and 5, suggesting that upwelling or disturbance of water stratification took place during the interglacials. Thirdly, there are no significant differences between the distribution patterns of the various morphotypes of medium to large Gephyrocupsu, and the combined value of all medium Gephyrocupsu increases in abundance during glacials (stages 2 and 4 and the end of stage 6), similar to the abundance trends in benthic foraminifera. Finally, subordinate nannofossil taxa also show distinctive climatic trends during the last glacial cycle: (1) Syrucosphaera spp. are present in increased abundance during warmer extremes in climate (substages 5e, 5a, and stage 1); (2) Coccolithus pelagicus and Culcidiscus leptoporus dominate the subordinate nannofossil taxa, and their relative proportions seem to provide a useful paleoceanographic index, with C. pelagicus dominating when the Polar Front Zone is over the site (stages 6, 4 and 2), whilst C. leptoporus is relatively more abundant when the STC is positioned over the site (stages 1 and 5e). Increased abundance of C. pelagicus also can indicate intensified coastal upwelling.