915 resultados para Chain saws
Resumo:
This paper reports the observation of a reversible disassembly process for a previously reported octanuclear Cu(II) complex with imidazole. To identify the factors responsible for the process, five Cu(II) complexes of different nuclearity with different amino acid-derived tetradentate ligands were structurally characterized. The results show that the coordination geometry preference of Cu(II), the tendency of imidazole to act as in-plane ligand, and H-bonding played important role in the formation and disassembly of the octanuclear complex. A general scheme describing the effect of different amino acid side arms, solvents, and exogenous ligands on the nuclearity of the Cu(II) complexes has been presented. The crystals of the complexes also showed formation of multifaceted networks in the resulting complexes.
Mixed saturated-unsaturated alkyl-chain assemblies: Solid solutions of zinc stearate and zinc oleate
Resumo:
The linear saturated stearic acid and the bent mono-unsaturated oleic acid do not mix and form solid solutions. However, the zinc salts of these acids can. From X-ray diffraction and DSC measurements we show that the layered zinc stearate and zinc oleate salts form a homogeneous solid solution at all composition ratios. The solid solutions exhibit a single melting endotherm, with the melting temperature varying linearly with composition but with the enthalpy change showing a minimum. By monitoring features in the infrared spectra that are characteristic of the global conformation of the hydrocarbon chain, and hence can distinguish between stearate and oleate chains, it is shown that solid solution formation is realized by the introduction of gauche defects in a fraction of the stearate chains that are then no longer linear. This fraction increases with oleate concentration. It has also been possible from the spectroscopic measurements to establish a quantitative relation between molecular conformational order and the thermodynamic enthalpy of melting of the solid solutions.
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.
Resumo:
By examining corporate social responsibility (CSR) and power within the context of the food supply chain, this paper illustrates how food retailers claim to address food waste while simultaneously setting standards that result in the large-scale rejection of edible food on cosmetic grounds. Specifically, this paper considers the powerful role of food retailers and how they may be considered to be legitimately engaging in socially responsible behaviors to lower food waste, yet implement practices that ultimately contribute to higher levels of food waste elsewhere in the supply chain. Through interviews with key actors in the Australian fresh fruit and vegetable supply chain, we highlight the existence of a legitimacy gap in corporate social responsibility whereby undesirable behaviors are pushed elsewhere in the supply chain. It is argued that the structural power held by Australia’s retail duopoly means that supermarkets are able to claim virtuous and responsible behaviors, despite counter claims from within the fresh food industry that the food supermarkets’ private quality standards mean that fresh food is wasted. We argue that the supermarkets claim CSR kudos for reducing food waste at the expense of other supply chain actors who bear both the economic cost and the moral burden of waste, and that this is a consequence of supermarkets’ remarkable market power in Australia.
Resumo:
Two new alkali metal borophosphates, K-3[BP(3)o(9)(OH)(3)] and Rb-3[B2P3O11(OH)(2)], were synthesized by applying solvothermal techniques using ethanol as solvent. The crystal structures were solved by means of single-crystal X-ray diffraction (K-3[BP3O9(OH)(3)], monoclinic, C2/c (No. 15), a = 2454.6(8) pm, b = 736.3(2) pm, c = 1406.2(4) pm, beta = 118.35(2)degrees, Z = 8; Rb-3[B2P3O11(OH)(2)], monoclinic, P2(1)/c (No. 14), a = 781.6(2) pm, b:= 667.3(2) pm, c = 2424.8(5) pm, beta = 92.88(1)degrees, Z = 4). Both crystal structures comprise borophosphate chain anions. While for the rubidium compound a loop-branched chain motif is found as common for most of the chain anions in alkali metal borophosphates, the crystal structure of the potassium phase comprises the first open-branched chain with the highest phosphate content found so far in this group of compounds. Both chain anions are Closely related to known anhydrous or hydrated phases, and the structural relations are discussed in terms of how the presence of OH groups and hydrogen bonds as well as number, charge, and size of charge balancing cations influence the 3D structural arrangement. The anionic entities are classified in terms of general principles of structural systematics for borophosphates.
Resumo:
An optical technique is proposed for obtaining multiple excitation spots. Phase-matched counter propagating extended depth-of-focus fields were superimposed along the optical axis for generating multiple localized excitation spots. Moreover, the filtering effect due to the optical mask increases the lateral resolution. Proposed technique introduces the concept of simultaneous multiplane excitation and improves three-dimensional resolution. (C) 2010 American Institute of Physics.
Resumo:
Main chain and segmental dynamics of polyisoprene (PI) and poly(methyl methacrylate)(PMMA) chains in semi IPNs were systematically studied over a wide range of temperatures (above and below T-g of both polymers) as a function of composition, crosslink density, and molecular weight. The immiscible polymers retained most of its characteristic molecular motion; however, the semi IPN synthesis resulted in dramatic changes in the motional behavior of both polymers due to the molecular level interpenetration between two polymer chains. ESR spin probe method was found to be sensitive to the concentration changes of PMMA in semi IPNs. Low temperature spectra showed the characteristics of rigid limit spectra, and in the range of 293-373 K.complex spectra were obtained with the slow component mostly arisingout of the PMMA rich regions and fast component from the PI phase. We found that the rigid PMMA chains closely interpenetrated into thehighly mobile PI network imparts motional restriction in nearby PI chains, and the highly mobile PI chains induce some degree of flexibility in highly rigid PMMA chains. Molecular level interchain mixing was found to be more efficient at a PMMA concentration of 35 wt.%. Moreover, the strong interphase formed in the above mentionedsemi IPN contributed to the large slow component in the ESR spectra at higher temperature. The shape of the spectra along with the data obtained from the simulations of spectra was correlated to the morphology of the semi IPNs. The correlation time measurement detected the motional region associated with the glass transition of PI and PMMA, and these regions were found to follow the same pattern of shifts in a-relaxation of PI and PMMA observed in DMA analysis. Activation energies associated with the T-g regions were also calculated. T-50G was found to correlate with the T-g of PMMA, and the volume of polymer segments undergoing glass transitional motion was calculated to be 1.7 nm(3).C-13 T-1 rho measurements of PMMA carbons indicate that the molecular level interactions were strong in semi IPN irrespective of the immiscible nature of polymers. The motional characteristics of H atoms attached to carbon atoms in both polymers were analyzed using 2D WISE NMR. Main relaxations of both components shifted inward, and both SEM and TEM analysis showed the development of a nanometer sized morphology in the case of highly crosslinked semi IPN. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The carboxyl chain of some molecules has been found to be responsible for causing rearrangements and controlling their course. This chain effect, which operates during reactions involving carbonium ions, is illustrated with examples from Sandalwood oil chemistry.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
In this paper, nonhomogeneous Markov chains are proposed for modeling the cracking behavior of reinforced concrete beams subjected to monotonically increasing loads. The model facilitates prediction of the maximum crackwidth at a given load given the crackwidth at a lower load level, and thus leads to a better understanding of the cracking phenomenon. To illustrate the methodology developed, the results of three reinforced concrete beams tested in the laboratory are analyzed and presented.
Resumo:
With the rapid development of photovoltaic system installations and increased number of grid connected power systems, it has become imperative to develop an efficient grid interfacing instrumentation suitable for photovoltaic systems ensuring maximum power transfer. The losses in the power converter play an important role in the overall efficiency of a PV system. Chain cell converter is considered to be efficient as compared to PWM converters due to lower switching losses, modularized circuit layout, reduced voltage rating of the converter switches, reduced EMI. The structure of separate dc sources in chain cell converter is well suited for photovoltaic systems as there will b several separate PV modules in the PV array which can act as an individual dc source. In this work, a single phase multilevel chain cell converter is used to interface the photovoltaic array to a single phase grid at a frequency of 50Hz. Control algorithms are developed for efficient interfacing of the PV system with grid and isolating the PV system from grid under faulty conditions. Digital signal processor TMS320F 2812 is used to implement the control algorithms developed and for the generation of other control signals.