971 resultados para Cellular activation
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.
Resumo:
A large body of literature documents in both mice and Drosophila the involvement of Insulin pathway in growth regulation, probably due to its role in glucose and lipid import, nutrient storage, and translation of RNAs implicated in ribosome biogenesis (Vanhaesebroeck et al. 2001). Moreover several lines of evidence implicate this pathway as a causal factor in cancer (Sale, 2008; Zeng and Yee 2007; Hursting et al., 2007; Chan et al., 2008). With regards to Myc, studies in cell culture have implied this family of transcription factors as regulators of the cell cycle that are rapidly induced in response to growth factors. Myc is a potent oncogene, rearranged and overexpressed in a wide range of human tumors and necessary during development. Its conditional knock-out in mice results in reduction of body weight due to defect in cell proliferation (Trumpp et al. 2001). Evidence from in vivo studies in Drosophila and mammals suggests a critical function for myc in cell growth regulation (Iritani and Eisenman 1999; Johnston et al. 1999; Kim et al. 2000; de Alboran et al. 2001; Douglas et al. 2001). This role is supported by our analysis of Myc target genes in Drosophila, which include genes involved in RNA binding, processing, ribosome biogenesis and nucleolar function (Orain et al 2003, Bellosta et al., 2005, Hulf et al, 2005). The fact that Insulin signaling and Myc have both been associated with growth control suggests that they may interact with each other. However, genetic evidence suggesting that Insulin signaling regulates Myc in vivo is lacking. In this work we were able to show, for the first time, a direct modulation of dMyc in response to Insulin stimulation/silencing both in vitro and in vivo. Our results suggest that dMyc up-regulation in response to DILPs signaling occurs both at the mRNA and potein level. We believe dMyc protein accumulation after Insulin signaling activation is conditioned to AKT-dependent GSK3β/sgg inactivation. In fact, we were able to demonstate that dMyc protein stabilization through phosphorylation is a conserved feature between Drosophila and vertebrates and requires multiple events. The final phosphorylation step, that results in a non-stable form of dMyc protein, ready to be degraded by the proteasome, is performed by GSK3β/sgg kinase (Sears, 2004). At the same time we demonstrated that CKI family of protein kinase are required to prime dMyc phosphorylation. DILPs and TOR/Nutrient signalings are known to communicate at several levels (Neufeld, 2003). For this reason we further investigated TOR contribution to dMyc-dependent growth regulation. dMyc protein accumulates in S2 cells after aminoacid stimulation, while its mRNA does not seem to be affected upon TORC1 inhibition, suggesting that the Nutrient pathway regulates dMyc mostly post-transcriptionally. In support to this hypothesis, we observed a TORC1-dependent GSK3β/sgg inactivation, further confirming a synergic effect of DILPs and Nutrients on dMyc protein stability. On the other hand, our data show that Rheb but not S6K, both downstream of the TOR kinase, contributes to the dMyc-induced growth of the eye tissue, suggesting that Rheb controls growth independently of S6K.. Moreover, Rheb seems to be able to regulate organ size during development inducing cell death, a mechanism no longer occurring in absence of dmyc. These observations suggest that Rheb might control growth through a new pathway independent of TOR/S6K but still dependent on dMyc. In order to dissect the mechanism of dMyc regulation in response to these events, we analyzed the relative contribution of Rheb, TOR and S6K to dMyc expression, biochemically in S2 cells and in vivo in morphogenetic clones and we further confirmed an interplay between Rheb and Myc that seems to be indipendent from TOR. In this work we clarified the mechanisms that stabilize dMyc protein in vitro and in vivo and we observed for the first time dMyc responsiveness to DILPs and TOR. At the same time, we discovered a new branch of the Nutrient pathway that appears to drive growth through dMyc but indipendently from TOR. We believe our work shed light on the mechanisms cells use to grow or restrain growth in presence/absence of growth promoting cues and for this reason it contributes to understand the physiology of growth control.
Resumo:
Staphylococcus aureus alpha-hemolysin was the first bacterial toxin recognized to form pores in the plasma membrane of eukaryotic cells. It is secreted as a water-soluble monomer that upon contact with target membranes forms an amphiphatic heptameric beta-barrel which perforates the bilayer. As a consequence, red cells undergo colloidosmotic lyses, while some nucleated cells may succumb to necrosis or programmed cell death. However, most cells are capable of repairing a limited number of membrane lesions, and then respond with productive transcriptional activation of NF-kB. In the present study, by using microarray and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), data from a previously performed serial analysis of gene expression (SAGE) were extended and verified, revealing that immediate early genes (IEGs) such as c-fos, c-jun and egr-1 are strongly induced at 2-8 h after transient toxin treatment. Activating protein 1 (AP-1: c-Fos, c-Jun) binding activity was increased accordingly. As IEGs are activated by growth factors, these findings led to the discovery that -toxin promotes cell cycle progression of perforated cells in an EGFR-dependent fashion. Although the amount of c-fos mRNA rose rapidly after toxin treatment, c-Fos protein expression was observed only after a lag of about 3 h. Since translation consumes much ATP, which transiently drops after transient membrane perforation, the suspicion arised that membrane-perforation caused global, but temporary downregulation of translation. In fact, eIF2α became heavily phosphorylated minutes after cells had been confronted with the toxin, resulting in shutdown of protein synthesis before cellular ATP levels reached the nadir. GCN2 emerged as a candidate eIF2α kinase, since its expression rapidly increased in toxin-treated cells. Two hours after toxin treatment, GADD34 transcripts, encoding a protein that targets the catalytic subunit of protein phosphatase 1 (PP1) to the endoplasmic reticulum, were overexpressed. This was followed by dephosphorylation of eIF2α and resumption of protein synthesis. Addition of tautomycetin, a specific inhibitor of PP1, led to marked hyperphosphorylation of eIF2α and significantly reduced the drop of ATP-levels in toxin-treated cells. A novel link between two major stress-induced signalling pathways emerged when it was found that both translational arrest and restart were under the control of stress-activated protein kinase (SAPK) p38. The data provide an explanation for the indispensible role of p38 for defence against the archetypal threat of membrane perforation by agents that produce small transmembrane-pores.
Resumo:
Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.
Resumo:
Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.
Resumo:
The aim of this study is to investigate on some molecular mechanisms contributing to the pathogenesis of osteoarthritis (OA) and in particular to the senescence of articular chondrocytes. It is focused on understanding molecular events downstream GSK3β inactivation or dependent on the activity of IKKα, a kinase that does not belong to the phenotype of healthy articular chondrocytes. Moreover, the potential of some nutraceuticals on scavenging ROS thus reducing oxidative stress, DNA damage, and chondrocyte senescence has been evaluated in vitro. The in vitro LiCl-mediated GSK3β inactivation resulted in increased mitochondrial ROS production, that impacted on cellular proliferation, with S-phase transient arrest, increased SA-β gal and PAS staining, cell size and granularity. ROS are also responsible for the of increased expression of two major oxidative lesions, i.e. 1) double strand breaks, tagged by γH2AX, that associates with activation of GADD45β and p21, and 2) 8-oxo-dG adducts, that associate with increased IKKα and MMP-10 expression. The pattern observed in vitro was confirmed on cartilage from OA patients. IKKa dramatically affects the intensity of the DNA damage response induced by oxidative stress (H2O2 exposure) in chondrocytes, as evidenced by silencing strategies. At early time point an higher percentage of γH2AX positive cells and more foci in IKKa-KD cells are observed, but IKKa KD cells proved to almost completely recover after 24 hours respect to their controls. Telomere attrition is also reduced in IKKaKD. Finally MSH6 and MLH1 genes are up-regulated in IKKαKD cells but not in control cells. Hydroxytyrosol and Spermidine have a great ROS scavenging capacity in vitro. Both treatments revert the H2O2 dependent increase of cell death and γH2AX-foci formation and senescence, suggesting the ability of increasing cell homeostasis. These data indicate that nutraceuticals represent a great challenge in OA management, for both therapeutical and preventive purposes.
Resumo:
Accumulating evidence indicates that loss of physiological amyloid precursor protein (APP) function leads to enhanced susceptibility of neurons to cellular stress during brain aging. This study investigated the neuroprotective function of the soluble APP ectodomain sAPPα. Recombinant sAPPα protected primary hippocampal neurons and neuroblastoma cells from cell death induced by trophic factor deprivation. This protective effect was abrogated in APP-depleted neurons, but not in APLP1-, APLP2- or IGF1-R-deficient cells, indicating that expression of holo-APP is required for sAPPα-dependent neuroprotection. Strikingly, recombinant sAPPα, APP-E1 domain and the copper-binding growth factor-like domain (GFLD) of APP were able to stimulate PI3K/Akt survival signaling in different wildtype cell models, but failed in APP-deficient cells. An ADAM10 inhibitor blocking endogenous sAPPα secretion exacerbated neuron death in organotypic hippocampal slices subjected to metabolic stress, which could be rescued by exogenous sAPPα. Interestingly, sAPPα-dependent neuroprotection was unaffected in neurons of APP-ΔCT15 mice which lack the intracellular C-terminal YENPTY motif of APP. In contrast, sAPPα-dependent Akt signaling was completely abolished in APP mutant cells lacking the C-terminal G-protein interaction motif and by specifically blocking Gi/o-dependent signaling with pertussis toxin. Collectively, the present thesis provides new mechanistic insights into the physiological role of APP: the data suggest that cell surface APP mediates sAPPα-induced neuroprotection via Go-protein-coupled activation of the Akt pathway.
Resumo:
Neutral ceramidase (NCDase) and sphingosine kinases (SphKs) are key enzymes regulating cellular sphingosine-1-phosphate (S1P) levels. In this study we found that stress factor-induced apoptosis of rat renal mesangial cells was significantly reduced by dexamethasone treatment. Concomitantly, dexamethasone increased cellular S1P levels, suggesting an activation of sphingolipid-metabolizing enzymes. The cell-protective effect of glucocorticoids was reversed by a SphK inhibitor, was completely absent in SphK1-deficient cells, and was associated with upregulated mRNA and protein expression of NCDase and SphK1. Additionally, in vivo experiments in mice showed that dexamethasone also upregulated SphK1 mRNA and activity, and NCDase protein expression in the kidney. Fragments (2285, 1724, and 1126 bp) of the rat NCDase promoter linked to a luciferase reporter were transfected into rat kidney fibroblasts and mesangial cells. There was enhanced NCDase promoter activity upon glucocorticoids treatment that was abolished by the glucocorticoid receptor antagonist RU-486. Single and double mutations of the two putative glucocorticoid response element sites within the promoter reduced the dexamethasone effect, suggesting that both glucocorticoid response elements are functionally active and required for induction. Our study shows that glucocorticoids exert a protective effect on stress-induced mesangial cell apoptosis in vitro and in vivo by upregulating NCDase and SphK1 expression and activity, resulting in enhanced levels of the protective lipid second messenger S1P.
Resumo:
Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.
Resumo:
Mutations in the plakoglobin (JUP) gene have been identified in arrhythmogenic right ventricular cardiomyopathy (ARVC) patients. However, the mechanisms underlying plakoglobin dysfunction involved in the pathogenesis of ARVC remain poorly understood. Plakoglobin is a component of both desmosomes and adherens junctions located at the intercalated disc (ICD) of cardiomyocytes, where it functions to link cadherins to the cytoskeleton. In addition, plakoglobin functions as a signaling protein via its ability to modulate the Wnt/beta-catenin signaling pathway. To investigate the role of plakoglobin in ARVC, we generated an inducible cardiorestricted knockout (CKO) of the plakoglobin gene in mice. Plakoglobin CKO mice exhibited progressive loss of cardiac myocytes, extensive inflammatory infiltration, fibrous tissue replacement, and cardiac dysfunction similar to those of ARVC patients. Desmosomal proteins from the ICD were decreased, consistent with altered desmosome ultrastructure in plakoglobin CKO hearts. Despite gap junction remodeling, plakoglobin CKO hearts were refractory to induced arrhythmias. Ablation of plakoglobin caused increase beta-catenin stabilization associated with activated AKT and inhibition of glycogen synthase kinase 3beta. Finally, beta-catenin/TCF transcriptional activity may contribute to the cardiac hypertrophy response in plakoglobin CKO mice. This novel model of ARVC demonstrates for the first time how plakoglobin affects beta-catenin activity in the heart and its implications for disease pathogenesis.
Resumo:
Summary Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.
Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells
Resumo:
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.
Resumo:
Humoral immunity in response to an octavalent O-polysaccharide-toxin A conjugate Pseudomonas aeruginosa vaccine is well studied, and a phase III clinical study in cystic fibrosis (CF) patients is currently ongoing. In contrast, little is known about cellular immunity induced by this vaccine. Fifteen healthy volunteers were immunized on days 1 and 60. Parameters of cellular immunity were studied before vaccination on day 1, and on day 74. Analyses included flow cytometry of whole blood and antigen-induced proliferation of and cytokine production by lymphocyte cultures. The effects of immunization on the composition of peripheral blood lymphocytes as determined by flow cytometry were minor. In contrast, after immunization a highly significant increase of proliferation in response to stimulation with detoxified toxin A was noted: the stimulation index rose from 1.4 on day 1 to 42.2 on day 74 (restimulation with 0.4 microg/ml; P = 0.003). Immunization led to significant production of interferon (IFN)-gamma and tumour necrosis factor (TNF)-alpha by antigen-stimulated lymphocytes. In contrast, no significant induction of interleukin (IL)-4 or IL-10 was observed. In conclusion, immunization of healthy volunteers led to activation of cellular immunity including strong antigen-specific proliferation and cytokine production. In CF patients priming of the cellular immune system towards a Th1-like pattern would be of potential advantage. Therefore, confirmatory analyses in immunized CF patients with and without chronic infection with P. aeruginosa are foreseen.
Resumo:
Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.
Resumo:
Listeria monocytogenes is a prototypic bacterium for studying innate and adaptive cellular immunity as well as host defense. Using human monocyte-derived macrophages, we report that an infection with a wild-type strain, but not a listeriolysin O-deficient strain, of the Gram-positive bacterium L. monocytogenes induces expression of IFN-beta and a bioactive type I IFN response. Investigating the activation of signaling pathways in human macrophages after infection revealed that a wild-type strain and a hemolysin-deficient strain of L. monocytogenes activated the NF-kappaB pathway and induced a comparable TNF response. p38 MAPK and activating transcription factor 2 were phosphorylated following infection with either strain, and IFN-beta gene expression induced by wild-type L. monocytogenes was reduced when p38 was inhibited. However, neither IFN regulatory factor (IRF) 3 translocation to the nucleus nor posttranslational modifications and dimerizations were observed after L. monocytogenes infection. In contrast, vesicular stomatitis virus and LPS triggered IRF3 activation and signaling. When IRF3 was knocked down using small interfering RNA, a L. monocytogenes-induced IFN-beta response remained unaffected whereas a vesicular stomatitis virus-triggered response was reduced. Evidence against the possibility that IRF7 acts in place of IRF3 is provided. Thus, we show that wild-type L. monocytogenes induced an IFN-beta response in human macrophages and propose that this response involves p38 MAPK and activating transcription factor 2. Using various stimuli, we show that IRF3 is differentially activated during type I IFN responses in human macrophages.