960 resultados para Cell-wall Synthesis
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.
Resumo:
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of:Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear (N-15) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action. (C) 1999 Academic Press.
Resumo:
A thesis to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Staphylococcus aureus (S. aureus) is a major human pathogen that has acquired resistance to practically all classes of β-lactam antibiotics, being responsible of Multidrug resistant S. aureus (MRSA) associated infections both in healthcare (HA-MRSA) and community settings (CA-MRSA). The emergence of laboratory strains with high-resistance (VRSA) to the last resort antibiotic, vancomycin, is a warning of what is to come in clinical strains. Penicillin binding proteins (PBPs) target β-lactams and are responsible for catalyzing the last steps of synthesis of the main component of cell wall, peptidoglycan. As in Escherichia coli, it is suggested that S. aureus uses a multi-protein complex that carries out cell wall synthesis. In the presence of β-lactams, PBP2A and PBP2 perform a joint action to build the cell wall and allow cell survival. Likewise, PBP2 cooperates with PBP4 in cell wall cross-linking. However, an actual interaction between PBP2 and PBP4 and the location of such interaction has not yet been determined. Therefore, investigation of the existence of a PBP2-PBP4 interaction and its location(s) in vivo is of great interest, as it should provide new insights into the function of the cell wall synthesis machinery in S. aureus. The aim of this work was to develop Split-GFPP7 system to determine interactions between PBP2 and PBP4. GFPP7 was split in a strategic site and fused to proteins of interest. When each GFPP7 fragment, fused to proteins, was expressed alone in staphylococcal cells, no fluorescence was detectable. When GFPP7 fragments fused to different peptidoglycan synthesis (PBP2 and PBP4) or cell division (FtsZ and EzrA) proteins were co-expressed together, fluorescent fusions were localized to the septum. However, further analysis revealed that this positive result is mediated by GFPP7 self-association. We then interpret the results in light of such event and provide insights into ways of improving this system.
Resumo:
Résumé La structure, ou l'architecture, des êtres vivants définit le cadre dans lequel la physique de la vie s'accomplit. La connaissance de cette structure dans ses moindres détails est un but essentiel de la biologie. Son étude est toutefois entravée par des limitations techniques. Malgré son potentiel théorique, la microscopie électronique n'atteint pas une résolution atomique lorsqu'elle est appliquée ä la matièxe biologique. Cela est dû en grande partie au fait qu'elle contient beaucoup d'eau qui ne résiste pas au vide du microscope. Elle doit donc être déshydratée avant d'être introduite dans un microscope conventionnel. Des artéfacts d'agrégation en découlent inévitablement. La cryo-microscopie électronique des sections vitreuses (CEMOVIS) a ëté développée afin de résoudre cela. Les spécimens sont vitrifiés, c.-à-d. que leur eau est immobilisée sans cristalliser par le froid. Ils sont ensuite coupés en sections ultrafines et celles-ci sont observées à basse température. Les spécimens sont donc observés sous forme hydratée et non fixée; ils sont proches de leur état natif. Durant longtemps, CEMOVIS était très difficile à exécuter mais ce n'est plus le cas. Durant cette thèse, CEMOVIS a été appliqué à différents spécimens. La synapse du système nerveux central a été étudiée. La présence dans la fente synaptique d'une forte densité de molécules organisées de manière périodique a été démontrée. Des particules luminales ont été trouvées dans Ies microtubules cérébraux. Les microtubules ont servi d'objets-test et ont permis de démontrer que des détails moléculaires de l'ordre du nm sont préservés. La compréhension de la structure de l'enveloppe cellulaire des bactéries Grampositives aété améliorée. Nos observations ont abouti à l'élaboration d'un nouveau modèle hypothétique de la synthèse de la paroi. Nous avons aussi focalisé notre attention sur le nucléoïde bactérien et cela a suscité un modèle de la fonction des différents états structuraux du nucléoïde. En conclusion, cette thèse a démontré que CEMOVIS est une excellente méthode poux étudier la structure d'échantillons biologiques à haute résolution. L'étude de la structure de divers aspects des êtres vivants a évoqué des hypothèses quant à la compréhension de leur fonctionnement. Summary The structure, or the architecture, of living beings defines the framework in which the physics of life takes place. Understanding it in its finest details is an essential goal of biology. Its study is however hampered by technical limitations. Despite its theoretical potential, electron microscopy cannot resolve individual atoms in biological matter. This is in great part due to the fact. that it contains a lot of water that cannot stand the vacuum of the microscope. It must therefore be dehydrated before being introduced in a conventional mìcroscope. Aggregation artefacts unavoidably happen. Cryo-electron microscopy of vitreous sections (CEMOVIS) has been developed to solve this problem. Specimens are vitrified, i.e. they are rapidly cooled and their water is immobilised without crystallising by the cold. They are then. sectioned in ultrathin slices, which are observed at low temperatures. Specimens are therefore observed in hydrated and unfixed form; they are close to their native state. For a long time, CEMOVIS was extremely tedious but this is not the case anymore. During this thesis, CEMOVIS was applied to different specimens. Synapse of central nervous system was studied. A high density of periodically-organised molecules was shown in the synaptic cleft. Luminal particles were found in brain microtubules. Microtubules, used as test specimen, permitted to demonstrate that molecular details of the order of nm .are preserved. The understanding of the structure of cell envelope of Gram-positive bacteria was improved. Our observations led to the elaboration of a new hypothetic model of cell wall synthesis. We also focused our attention on bacterial nucleoids and this also gave rise to a functional model of nucleoid structural states. In conclusion, this thesis demonstrated that CEMOVIS is an excellent method for studying the structure of bìologìcal specimens at high resolution. The study of the structure of various aspects of living beings evoked hypothesis for their functioning.
Resumo:
The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots.
Resumo:
Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.
Resumo:
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
The recently described cupin superfamily of proteins includes the germin and germinlike proteins, of which the cereal oxalate oxidase is the best characterized. This superfamily also includes seed storage proteins, in addition to several microbial enzymes and proteins with unknown function. All these proteins are characterized by the conservation of two central motifs, usually containing two or three histidine residues presumed to be involved with metal binding in the catalytic active site. The present study on the coding regions of Synechocystis PCC6803 identifies a previously unknown group of 12 related cupins, each containing the characteristic two-motif signature. This group comprises 11 single-domain proteins, ranging in length from 104 to 289 residues, and includes two phosphomannose isomerases and two epimerases involved in cell wall synthesis, a member of the pirin group of nuclear proteins, a possible transcriptional regulator, and a close relative-of a cytochrome c551 from Rhodococcus. Additionally, there is a duplicated, two-domain protein that has close similarity to an oxalate decarboxylase from the fungus Collybia velutipes and that is a putative progenitor of the storage proteins of land plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In a global and increasingly competitive fresh produce market, more attention is being given to fruit quality traits and consumer satisfaction. Kiwifruit occupies a niche position in the worldwide market, when compared to apples, oranges or bananas. It is a fruit with extraordinarily good nutritional traits, and its benefits to human health have been widely described. Until recently, international trade in kiwifruit was restricted to a single cultivar, but different types of kiwifruit are now becoming available in the market. Effective programmes of kiwifruit improvement start by considering the requirements of consumers, and recent surveys indicate that sweeter fruit with better flavour are generally preferred. There is a strong correlation between at-harvest dry matter and starch content, and soluble solid concentration and flavour when fruit are eating ripe. This suggests that carbon accumulation strongly influences the development of kiwifruit taste. The overall aim of the present study was to determine what factors affect carbon accumulation during Actinidia deliciosa berry development. One way of doing this is by comparing kiwifruit genotypes that differ greatly in their ability to accumulate dry matter in their fruit. Starch is the major component of dry matter content. It was hypothesized that genotypes were different in sink strength. Sink strength, by definition, is the effect of sink size and sink activity. Chapter 1 reviews fruit growth, kiwifruit growth and development and carbon metabolism. Chapter 2 describes the materials and methods used. Chapter 3, 4, 5 and 6 describes different types of experimental work. Chapter 7 contains the final discussions and the conclusions Three Actinidia deliciosa breeding populations were analysed in detail to confirm that observed differences in dry matter content were genetically determined. Fruit of the different genotypes differed in dry matter content mainly because of differences in starch concentrations and dry weight accumulation rates, irrespective of fruit size. More detailed experiments were therefore carried out on genotypes which varied most in fruit starch concentrations to determine why sink strengths were so different. The kiwifruit berry comprises three tissues which differ in dry matter content. It was initially hypothesised that observed differences in starch content could be due to a larger proportion of one or other of these tissues, for example, of the central core which is highest in dry matter content. The study results showed that this was not the case. Sink size, intended as cell number or cell size, was then investigated. The outer pericarp makes up about 60% of berry weight in ‘Hayward’ kiwifruit. The outer pericarp contains two types of parenchyma cells: large cells with low starch concentration, and small cells with high starch concentration. Large cell, small cell and total cell densities in the outer pericarp were shown to be not correlated with either dry matter content or fruit size but further investigation of volume proportion among cell types seemed justified. It was then shown that genotypes with fruit having higher dry matter contents also had a higher proportion of small cells. However, the higher proportion of small cell volume could only explain half of the observed differences in starch content. So, sink activity, intended as sucrose to starch metabolism, was investigated. In transiently starch storing sinks, such as tomato fruit and potato tubers, a pivotal role in carbon metabolism has been attributed to sucrose cleaving enzymes (mainly sucrose synthase and cell wall invertase) and to ADP-glucose pyrophosphorylase (the committed step in starch synthesis). Studies on tomato and potato genotypes differing in starch content or in final fruit soluble solid concentrations have demonstrated a strong link with either sucrose synthase or ADP-glucose pyrophosphorylase, at both enzyme activity and gene expression levels, depending on the case. Little is known about sucrose cleaving enzyme and ADP-glucose pyrophosphorylase isoforms. The HortResearch Actinidia EST database was then screened to identify sequences putatively encoding for sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoforms and specific primers were designed. Sucrose synthase, invertase and ADP-glucose pyrophosphorylase isoform transcript levels were anlayzed throughout fruit development of a selection of four genotypes (two high dry matter and two low dry matter). High dry matter genotypes showed higher amounts of sucrose synthase transcripts (SUS1, SUS2 or both) and higher ADP-glucose pyrophosphorylase (AGPL4, large subunit 4) gene expression, mainly early in fruit development. SUS1- like gene expression has been linked with starch biosynthesis in several crop (tomato, potato and maize). An enhancement of its transcript level early in fruit development of high dry matter genotypes means that more activated glucose (UDP-glucose) is available for starch synthesis. This can be then correlated to the higher starch observed since soon after the onset of net starch accumulation. The higher expression level of AGPL4 observed in high dry matter genotypes suggests an involvement of this subunit in drive carbon flux into starch. Changes in both enzymes (SUSY and AGPse) are then responsible of higher starch concentrations. Low dry matter genotypes showed generally higher vacuolar invertase gene expression (and also enzyme activity), early in fruit development. This alternative cleavage strategy can possibly contribute to energy loss, in that invertases’ products are not adenylated, and further reactions and transport are needed to convert carbon into starch. Although these elements match well with observed differences in starch contents, other factors could be involved in carbon metabolism control. From the microarray experiment, in fact, several kinases and transcription factors have been found to be differentially expressed. Sink strength is known to be modified by application of regulators. In ‘Hayward’ kiwifruit, the synthetic cytokinin CPPU (N-(2-Chloro-4-Pyridyl)-N-Phenylurea) promotes a dramatic increase in fruit size, whereas dry matter content decreases. The behaviour of CPPU-treated ‘Hayward’ kiwifruit was similar to that of fruit from low dry matter genotypes: dry matter and starch concentrations were lower. However, the CPPU effect was strongly source limited, whereas in genotype variation it was not. Moreover, CPPU-treated fruit gene expression (at sucrose cleavage and AGPase levels) was similar to that in high dry matter genotypes. It was therefore concluded that CPPU promotes both sink size and sink activity, but at different “speeds” and this ends in the observed decrease in dry matter content and starch concentration. The lower “speed” in sink activity is probably due to a differential partitioning of activated glucose between starch storage and cell wall synthesis to sustain cell expansion. Starch is the main carbohydrate accumulated in growing Actinidia deliciosa fruit. Results obtained in the present study suggest that sucrose synthase and AGPase enzymes contribute to sucrose to starch conversion, and differences in their gene expression levels, mainly early in fruit development, strongly affect the rate at which starch is therefore accumulated. This results are interesting in that starch and Actinidia deliciosa fruit quality are tightly connected.
Resumo:
The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVA(Cg)) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition of a rod shape. DivIVA from Streptomyces or Mycobacterium localized to the cell poles of DivIVA(Cg)-depleted C. glutamicum and restored polar peptidoglycan synthesis, in contrast to DivIVA proteins from Bacillus subtilis or Streptococcus pneumoniae, which localized at the septum of C. glutamicum. This confirmed that DivIVAs from actinomycetes are involved in polarized cell growth. DivIVA(Cg) localized at the septum after cell wall synthesis had started and the nucleoids had already segregated, suggesting that in C. glutamicum DivIVA is not involved in cell division or chromosome segregation.
Resumo:
Streptococcus pneumoniae is the main causal agent of pathologies that are increasingly resistant to antibiotic treatment. Clinical resistance of S. pneumoniae to β-lactam antibiotics is linked to multiple mutations of high molecular mass penicillin-binding proteins (H-PBPs), essential enzymes involved in the final steps of bacterial cell wall synthesis. H-PBPs from resistant bacteria have a reduced affinity for β-lactam and a decreased hydrolytic activity on substrate analogues. In S. pneumoniae, the gene coding for one of these H-PBPs, PBP2x, is located in the cell division cluster (DCW). We present here structural evidence linking multiple β-lactam resistance to amino acid substitutions in PBP2x within a buried cavity near the catalytic site that contains a structural water molecule. Site-directed mutation of amino acids in contact with this water molecule in the “sensitive” form of PBP2x produces mutants similar, in terms of β-lactam affinity and substrate hydrolysis, to altered PBP2x produced in resistant clinical isolates. A reverse mutation in a PBP2x variant from a clinically important resistant clone increases the acylation efficiency for β-lactams and substrate analogues. Furthermore, amino acid residues in contact with the structural water molecule are conserved in the equivalent H-PBPs of pathogenic Gram-positive cocci. We suggest that, probably via a local structural modification, the partial or complete loss of this water molecule reduces the acylation efficiency of PBP2x substrates to a point at which cell wall synthesis still occurs, but the sensitivity to therapeutic concentrations of β-lactam antibiotics is lost.