979 resultados para Cell shape
Resumo:
Die Verbindung von elektrisch aktiven, lebenden Zellen zu extrazellulären Sensorsystemen eröffnet vielfälige Möglichkeiten im Bereich der Biosensorik. Die vorliegende Arbeit leistet einen Beitrag zum tieferen Verständnis der elektrischen Kopplungsmechanismen zwischen den biologischen und elektronischen Teilen solcher Hybridsysteme. Es wurden dazu drei Hauptbereiche bearbeitet:Ein System zur extrazellulären Signalableitung an lebenden Zellen bestehend aus einem Sensorchip, einem Vorverstärkerkopf und einem Hauptverstärker wurde weiterentwickelt.Als Sensoren wurden entweder Metallmikroelektroden-Chips mit 64 Kanälen oder Feldeffekt Transistoren-Chips mit 16 Kanälen (FET) eingesetzt. Es wurden zusätzlich spezielle FET Sensoren mit Rückseitenkontakten hergestellt und eingesetzt.Die elektrische Kopplung von einzelnen Nervenzellen der neuronalen Zell-Linien SH-SY5Y und TR14 oder primär kultivierten Neuronen aus dem Hirnstamm oder dem Hippocampus von embryonalen Ratten mit den extrazellulären Sensoren wurde untersucht. In der 'whole-cell' Patch-Clamp Technik wurden die Beiträge der spannungsgesteuerten Na+- und K+-Ionenkanäle zur extrazellulären Signalform identifiziert. Die Simulation der Signale mit einem Ersatzschaltkreis (Punkt-Kontakt Modell), der in PSPICE implementiert wurde, deutet auf eine starke Abhängigkeit der Signalformen in bezug auf Konzentrationsänderungen von Na+- und K+-Ionen im Volumenbereich zwischen Zelle und den ionensensitiven Transistoren hin. Ein empirisch erweitertes Punkt-Kontakt Modell wurde daraufhin vorgestellt.Im dritten Teil der Arbeit wurden Zellschichten von Kardiomyocyten embryonaler Ratten auf den extrazellulären Sensoren kultiviert. Die Eignung eines solchen Hybridsensors als Modellherz fuer das pharmazeutische Screeing wurde durch Messungen mit Herzstimulanzien und -relaktanzien bestätigt.
Resumo:
Sudden cardiac death due to ventricular arrhythmia is one of the leading causes of mortality in the world. In the last decades, it has proven that anti-arrhythmic drugs, which prolong the refractory period by means of prolongation of the cardiac action potential duration (APD), play a good role in preventing of relevant human arrhythmias. However, it has long been observed that the “class III antiarrhythmic effect” diminish at faster heart rates and that this phenomenon represent a big weakness, since it is the precise situation when arrhythmias are most prone to occur. It is well known that mathematical modeling is a useful tool for investigating cardiac cell behavior. In the last 60 years, a multitude of cardiac models has been created; from the pioneering work of Hodgkin and Huxley (1952), who first described the ionic currents of the squid giant axon quantitatively, mathematical modeling has made great strides. The O’Hara model, that I employed in this research work, is one of the modern computational models of ventricular myocyte, a new generation began in 1991 with ventricular cell model by Noble et al. Successful of these models is that you can generate novel predictions, suggest experiments and provide a quantitative understanding of underlying mechanism. Obviously, the drawback is that they remain simple models, they don’t represent the real system. The overall goal of this research is to give an additional tool, through mathematical modeling, to understand the behavior of the main ionic currents involved during the action potential (AP), especially underlining the differences between slower and faster heart rates. In particular to evaluate the rate-dependence role on the action potential duration, to implement a new method for interpreting ionic currents behavior after a perturbation effect and to verify the validity of the work proposed by Antonio Zaza using an injected current as a perturbing effect.
Resumo:
Mit der Zielsetzung der vorliegenden Arbeit wurde die detailierten Analyse von Migrationsdynamiken epithelilaler Monolayer anhand zweier neuartiger in vitro Biosensoren verfolgt, der elektrischen Zell-Substrat Impedanz Spektroskopie (electrical cell-substrate impedance sensing, ECIS) sowie der Quarz Kristall Mikrowaage (quartz crystal microbalance, QCM). Beide Methoden erwiesen sich als sensitiv gegenüber der Zellmotilität und der Nanozytotoxizität.rnInnerhalb des ersten Projektes wurde ein Fingerprinting von Krebszellen anhand ihrer Motilitätsdynamiken und der daraus generierten elektrischen oder akkustischen Fluktuationen auf ECIS oder QCM Basis vorgenommen; diese Echtzeitsensoren wurdene mit Hilfe klassicher in vitro Boyden-Kammer Migrations- und Invasions-assays validiert. Fluktuationssignaturen, also Langzeitkorrelationen oder fraktale Selbstähnlichkeit aufgrund der kollektiven Zellbewegung, wurden über Varianz-, Fourier- sowie trendbereinigende Fluktuationsanalyse quantifiziert. Stochastische Langzeitgedächtnisphänomene erwiesen sich als maßgebliche Beiträge zur Antwort adhärenter Zellen auf den QCM und ECIS-Sensoren. Des weiteren wurde der Einfluss niedermolekularer Toxine auf die Zytoslelettdynamiken verfolgt: die Auswirkungen von Cytochalasin D, Phalloidin und Blebbistatin sowie Taxol, Nocodazol und Colchicin wurden dabei über die QCM und ECIS Fluktuationsanalyse erfasst.rnIn einem zweiten Projektschwerpunkt wurden Adhäsionsprozesse sowie Zell-Zell und Zell-Substrat Degradationsprozesse bei Nanopartikelgabe charackterisiert, um ein Maß für Nanozytotoxizität in Abhangigkeit der Form, Funktionalisierung Stabilität oder Ladung der Partikel zu erhalten.rnAls Schlussfolgerung ist zu nennen, dass die neuartigen Echtzeit-Biosensoren QCM und ECIS eine hohe Zellspezifität besitzen, auf Zytoskelettdynamiken reagieren sowie als sensitive Detektoren für die Zellvitalität fungieren können.
Resumo:
The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the of primary factors in governing the fate of the immunological recovery, predisposing or protecting from complications such as the onset of acute graft-versus-host disease (GvHD). Has been demonstrated, to our knowledge for the first time, that aHSCT in pediatric patients is associated to a profound modification of the GM ecosystem with a disruption of its mutualistic asset. aGvHD and non-aGvHD subjects showed differences in the process of GM recovery, in members abundance of the phylum Bacteroidetes, and in propionate fecal concentration; the latter are higher in the pre-HSCT composition of non-GvHD subjects than GvHD ones. Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients and distribute systemically from the gut to blood. For this reason, has been studied their effect in vitro on human DCs, the key regulators of our immune system and the main player of aGvHD onset. Has been observed that propionate and, particularly, butyrate show a strong and direct immunomodulatory activity on DCs reducing inflammatory markers such as chemokines and interleukins. This study, with the needed caution, suggests that the pre-existing GM structure can be protective against aGvHD onset, exerting its protective role through SCFAs. They, indeed, may regulate cell traffic within secondary lymphoid tissues, influence T cell development during antigen recognition, and, thus, directly shape the immune system.
Resumo:
The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.
Resumo:
To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.
Resumo:
Intestinal immunoglobulin A (IgA) ensures host defense and symbiosis with our commensal microbiota. Yet previous studies hint at a surprisingly low diversity of intestinal IgA, and it is unknown to what extent the diverse Ig arsenal generated by somatic recombination and diversification is actually used. In this study, we analyze more than one million mouse IgA sequences to describe the shaping of the intestinal IgA repertoire, its determinants, and stability over time. We show that expanded and infrequent clones combine to form highly diverse polyclonal IgA repertoires with very little overlap between individual mice. Selective homing allows expanded clones to evenly seed the small but not large intestine. Repertoire diversity increases during aging in a dual process. On the one hand, microbiota-, T cell-, and transcription factor RORγt-dependent but Peyer's patch-independent somatic mutations drive the diversification of expanded clones, and on the other hand, new clones are introduced into the repertoire of aged mice. An individual's IgA repertoire is stable and recalled after plasma cell depletion, which is indicative of functional memory. These data provide a conceptual framework to understand the dynamic changes in the IgA repertoires to match environmental and intrinsic stimuli.
Resumo:
Maternal antibodies protect newborns whilst they are immunologically immature. This study shows that maternal antibodies can also shape the B cell repertoire of the offspring long after the maternal antibodies themselves become undetectable. V(H)DJ(H) gene-targeted (VI10) mice expressing a heavy chain specific for vesicular stomatitis virus (VSV) produce a 20-fold increased spontaneous titer of VSV-neutralizing antibodies. When transferred from mother to offspring, these antibodies prevented accumulation of Ag-specific transitional type 2 and marginal zone B cells with an activated phenotype and favored selection to the B cell follicles. This effect was B cell-intrinsic and lasted up to adulthood. The pups nursed by mothers producing specific antibodies developed higher endogenous antibody titers of this specificity which perpetuated the effects of specific B cell selection into the mature follicular compartment, presumably by blocking auto-Ag-dependent development of transitional type 2 B cells in the spleen. This repertoire change was functional, as following infection of adult mice with VSV, those pups that had received specific maternal antibodies as neonates had increased pre-immune titers and mounted strong early IgG neutralizing antibodies.
Resumo:
The tremendous application potential of nanosized materials stays in sharp contrast to a growing number of critical reports of their potential toxicity. Applications of in vitro methods to assess nanoparticles are severely limited through difficulties in exposing cells of the respiratory tract directly to airborne engineered nanoparticles. We present a completely new approach to expose lung cells to particles generated in situ by flame spray synthesis. Cerium oxide nanoparticles from a single run were produced and simultaneously exposed to the surface of cultured lung cells inside a glovebox. Separately collected samples were used to measure hydrodynamic particle size distribution, shape, and agglomerate morphology. Cell viability was not impaired by the conditions of the glovebox exposure. The tightness of the lung cell monolayer, the mean total lamellar body volume, and the generation of oxidative DNA damage revealed a dose-dependent cellular response to the airborne engineered nanoparticles. The direct combination of production and exposure allows studying particle toxicity in a simple and reproducible way under environmental conditions.
Resumo:
Prevention and treatment of osteoporosis rely on understanding of the micromechanical behaviour of bone and its influence on fracture toughness and cell-mediated adaptation processes. Postyield properties may be assessed by nonlinear finite element simulations of nanoindentation using elastoplastic and damage models. This computational study aims at determining the influence of yield surface shape and damage on the depth-dependent response of bone to nanoindentation using spherical and conical tips. Yield surface shape and damage were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic-to-total work ratio is well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not statistically significant (p<0.0001). For spherical tips, damage was not a significant parameter (p<0.0001). The gained knowledge can be used for developing an inverse method for identification of postelastic properties of bone from nanoindentation.
Resumo:
The development of lymph nodes (LNs) and formation of LN stromal cell microenvironments is dependent on lymphotoxin-β receptor (LTβR) signaling. In particular, the LTβR-dependent crosstalk between mesenchymal lymphoid tissue organizer and hematopoietic lymphoid tissue inducer cells has been regarded as critical for these processes. Here, we assessed whether endothelial cell (EC)-restricted LTβR signaling impacts on LN development and the vascular LN microenvironment. Using EC-specific ablation of LTβR in mice, we found that conditionally LTβR-deficient animals failed to develop a significant proportion of their peripheral LNs. However, remnant LNs showed impaired formation of high endothelial venules (HEVs). Venules had lost their cuboidal shape, showed reduced segment length and branching points, and reduced adhesion molecule and constitutive chemokine expression. Due to the altered EC-lymphocyte interaction, homing of lymphocytes to peripheral LNs was significantly impaired. Thus, this study identifies ECs as an important LTβR-dependent lymphoid tissue organizer cell population and indicates that continuous triggering of the LTβR on LN ECs is critical for lymphocyte homeostasis.
Resumo:
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape.Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made.All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a 'dormant' or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle.Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183).
Resumo:
Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.
Resumo:
Upconverter materials and upconverter solar devices were recently investigated with broad-band excitation revealing the great potential of upconversion to enhance the efficiency of solar cell at comparatively low solar concentration factors. In this work first attempts are made to simulate the behavior of the upconverter β-NaYF4 doped with Er3+ under broad-band excitation. An existing model was adapted to account for the lower absorption of broader excitation spectra. While the same trends as observed for the experiments were found in the simulation, the absolute values are fairly different. This makes an upconversion model that specifically considers the line shape function of the ground state absorption indispensable to achieve accurate simulations of upconverter materials and upconverter solar cell devices with broadband excitations, such as the solar radiation.
Resumo:
Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3) both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg). Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE) cells, primary retinal cells, and the cone photoreceptor (PRC) cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1) was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.