976 resultados para CdS
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development of a new methodology for the construction of very efficient flow cells for mercury detection by potentiometric stripping analysis, employing the thin gold layer of recordable CDs as working electrode is reported. This new source of electrodes (CDtrodes) show very attractive performance, similar to that obtained with commercial gold electrodes, with superior versatility. The low cost of this new source of gold electrodes allows a frequent replacement of the electrode, avoiding cumbersome clean-up treatments. Various experimental parameters have been optimized to yield low detection limits (0.25 ng/mL of mercury for 5 min deposition at 0.3 V) and good precision (standard deviation of 1.9% was obtained for 15 repetitive measurements using 10 ng/mL of mercury). Standard curves were found to be linear over the range of 0.5-100 μg L-1 of mercury. The flow cells developed were used for the quantification of mercury in oceanic and tap water. © Springer-Verlag 2000.
Resumo:
We report on the strong temperature-dependent thermal expansion, alpha(D), in CdS quantum dots (QDs) embedded in a glass template. We have performed a systematic study by using the temperature-dependent first-order Raman spectra, in CdS bulk and in dot samples, in order to assess the size dependence of alpha(D), and where the role of the compressive strain provoked by the glass host matrix on the dot response is discussed. We report the Gruneisen mode parameters and the anharmonic coupling constants for small CdS dots with mean radius R similar to 2.0 nm. We found that gamma parameters change, with respect to the bulk CdS, in a range between 20 and 50%, while the anharmonicity contribution from two-phonon decay channel becomes the most important process to the temperature-shift properties.
Resumo:
In the present work we revisit the size data of CdS microcrystals previously collected in the glassy matrix of Germanium oxide. The CdS clusters analyzed using electron microscopy images have shown a wurtzite structure. The mean average radius, dispersion and volume evaluated from the histograms showed good agreement for t(1/3), t(2/3) and t laws, respectively. We observed that the amount of microcrystals remains constant throughout the heat treatment process, as well as that the radii distribution has a lower limit and increases with heat treatment. The distribution of radii follows a distribution similar to the Lifshitz-Slyozov-Wagner distribution limited in the origin. Discussions led to the conclusion that the growth of CdS is a process that occurs after the fluctuating nucleation and coalescence phases. We then analyze the growth process, assuming that the evaporation is overcome by the precipitation rate, stabilizing all clusters with respect to dissolution back into the matrix. The problem was simplified neglecting anisotropy and the assuming a spherical shape for clusters and particles. The low interface tension was described in terms of an empirical potential barrier in the surface of the cluster. The growth dynamics developed considering that the number of clusters remains constant, and that the minimum size of these clusters grow with time, as the first order approximation showed a good agreement with the flaw. (C) 2012 Elsevier B.V. All rights reserved.