982 resultados para Causal networks methodology
Resumo:
In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.
Resumo:
The brain is a complex neural network with a hierarchical organization and the mapping of its elements and connections is an important step towards the understanding of its function. Recent developments in diffusion-weighted imaging have provided the opportunity to reconstruct the whole-brain structural network in-vivo at a large scale level and to study the brain structural substrate in a framework that is close to the current understanding of brain function. However, methods to construct the connectome are still under development and they should be carefully evaluated. To this end, the first two studies included in my thesis aimed at improving the analytical tools specific to the methodology of brain structural networks. The first of these papers assessed the repeatability of the most common global and local network metrics used in literature to characterize the connectome, while in the second paper the validity of further metrics based on the concept of communicability was evaluated. Communicability is a broader measure of connectivity which accounts also for parallel and indirect connections. These additional paths may be important for reorganizational mechanisms in the presence of lesions as well as to enhance integration in the network. These studies showed good to excellent repeatability of global network metrics when the same methodological pipeline was applied, but more variability was detected when considering local network metrics or when using different thresholding strategies. In addition, communicability metrics have been found to add some insight into the integration properties of the network by detecting subsets of nodes that were highly interconnected or vulnerable to lesions. The other two studies used methods based on diffusion-weighted imaging to obtain knowledge concerning the relationship between functional and structural connectivity and about the etiology of schizophrenia. The third study integrated functional oscillations measured using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) as well as diffusion-weighted imaging data. The multimodal approach that was applied revealed a positive relationship between individual fluctuations of the EEG alpha-frequency and diffusion properties of specific connections of two resting-state networks. Finally, in the fourth study diffusion-weighted imaging was used to probe for a relationship between the underlying white matter tissue structure and season of birth in schizophrenia patients. The results are in line with the neurodevelopmental hypothesis of early pathological mechanisms as the origin of schizophrenia. The different analytical approaches selected in these studies also provide arguments for discussion of the current limitations in the analysis of brain structural networks. To sum up, the first studies presented in this thesis illustrated the potential of brain structural network analysis to provide useful information on features of brain functional segregation and integration using reliable network metrics. In the other two studies alternative approaches were presented. The common discussion of the four studies enabled us to highlight the benefits and possibilities for the analysis of the connectome as well as some current limitations.
Resumo:
During the last decade wireless mobile communications have progressively become part of the people’s daily lives, leading users to expect to be “alwaysbest-connected” to the Internet, regardless of their location or time of day. This is indeed motivated by the fact that wireless access networks are increasingly ubiquitous, through different types of service providers, together with an outburst of thoroughly portable devices, namely laptops, tablets, mobile phones, among others. The “anytime and anywhere” connectivity criterion raises new challenges regarding the devices’ battery lifetime management, as energy becomes the most noteworthy restriction of the end-users’ satisfaction. This wireless access context has also stimulated the development of novel multimedia applications with high network demands, although lacking in energy-aware design. Therefore, the relationship between energy consumption and the quality of the multimedia applications perceived by end-users should be carefully investigated. This dissertation addresses energy-efficient multimedia communications in the IEEE 802.11 standard, which is the most widely used wireless access technology. It advances the literature by proposing a unique empirical assessment methodology and new power-saving algorithms, always bearing in mind the end-users’ feedback and evaluating quality perception. The new EViTEQ framework proposed in this thesis, for measuring video transmission quality and energy consumption simultaneously, in an integrated way, reveals the importance of having an empirical and high-accuracy methodology to assess the trade-off between quality and energy consumption, raised by the new end-users’ requirements. Extensive evaluations conducted with the EViTEQ framework revealed its flexibility and capability to accurately report both video transmission quality and energy consumption, as well as to be employed in rigorous investigations of network interface energy consumption patterns, regardless of the wireless access technology. Following the need to enhance the trade-off between energy consumption and application quality, this thesis proposes the Optimized Power save Algorithm for continuous Media Applications (OPAMA). By using the end-users’ feedback to establish a proper trade-off between energy consumption and application performance, OPAMA aims at enhancing the energy efficiency of end-users’ devices accessing the network through IEEE 802.11. OPAMA performance has been thoroughly analyzed within different scenarios and application types, including a simulation study and a real deployment in an Android testbed. When compared with the most popular standard power-saving mechanisms defined in the IEEE 802.11 standard, the obtained results revealed OPAMA’s capability to enhance energy efficiency, while keeping end-users’ Quality of Experience within the defined bounds. Furthermore, OPAMA was optimized to enable superior energy savings in multiple station environments, resulting in a new proposal called Enhanced Power Saving Mechanism for Multiple station Environments (OPAMA-EPS4ME). The results of this thesis highlight the relevance of having a highly accurate methodology to assess energy consumption and application quality when aiming to optimize the trade-off between energy and quality. Additionally, the obtained results based both on simulation and testbed evaluations, show clear benefits from employing userdriven power-saving techniques, such as OPAMA, instead of IEEE 802.11 standard power-saving approaches.
Resumo:
Recently transcranial electric stimulation (tES) has been widely used as a mean to modulate brain activity. The modulatory effects of tES have been studied with the excitability of primary motor cortex. However, tES effects are not limited to the site of stimulation but extended to other brain areas, suggesting a need for the study of functional brain networks. Transcranial alternating current stimulation (tACS) applies sinusoidal current at a specified frequency, presumably modulating brain activity in a frequency-specific manner. At a behavioural level, tACS has been confirmed to modulate behaviour, but its neurophysiological effects are still elusive. In addition, neural oscillations are considered to reflect rhythmic changes in transmission efficacy across brain networks, suggesting that tACS would provide a mean to modulate brain networks. To study neurophysiological effects of tACS, we have been developing a methodological framework by combining transcranial magnetic stimulation (TMS), EEG and tACS. We have developed the optimized concurrent tACS-EEG recording protocol and powerful artefact removal method that allow us to study neurophysiological effects of tACS. We also established the concurrent tACS-TMS-EEG recording to study brain network connectivity while introducing extrinsic oscillatory activity by tACS. We show that tACS modulate brain activity in a phase-dependent manner. Our methodological advancement will open an opportunity to study causal role of oscillatory brain activity in neural transmissions in cortical brain networks.
Resumo:
In this paper, we address the role of countries’ goods-trade networks for their services-trade volume. The paper employs a large cross section of bilateral trade data on aggregate cross-border goods and services sales and illustrates that the depth and overlap of two countries’ services networks induce a positive direct impact on their services-trade volume. The evidence takes into account that goods trade flows and networks are potentially endogenous so that the estimated direct effects support a causal interpretation. We find that the magnitude of the multilateral goods-trade network effect on the bilateral services-trade volume is much larger than that of bilateral goods-trade volume.
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
We propose a new methodology to evaluate the balance between segregation and integration in functional brain networks by using singular value decomposition techniques. By means of magnetoencephalography, we obtain the brain activity of a control group of 19 individuals during a memory task. Next, we project the node-to-node correlations into a complex network that is analyzed from the perspective of its modular structure encoded in the contribution matrix. In this way, we are able to study the role that nodes play I/O its community and to identify connector and local hubs. At the mesoscale level, the analysis of the contribution matrix allows us to measure the degree of overlapping between communities and quantify how far the functional networks are from the configuration that better balances the integrated and segregated activity
Resumo:
In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.
Resumo:
Neutron spectra unfolding and dose equivalent calculation are complicated tasks in radiation protection, are highly dependent of the neutron energy, and a precise knowledge on neutron spectrometry is essential for all dosimetry-related studies as well as many nuclear physics experiments. In previous works have been reported neutron spectrometry and dosimetry results, by using the ANN technology as alternative solution, starting from the count rates of a Bonner spheres system with a LiI(Eu) thermal neutrons detector, 7 polyethylene spheres and the UTA4 response matrix with 31 energy bins. In this work, an ANN was designed and optimized by using the RDANN methodology for the Bonner spheres system used at CIEMAT Spain, which is composed of a He neutron detector, 12 moderator spheres and a response matrix for 72 energy bins. For the ANN design process a neutrons spectra catalogue compiled by the IAEA was used. From this compilation, the neutrons spectra were converted from lethargy to energy spectra. Then, the resulting energy ?uence spectra were re-binned by using the MCNP code to the corresponding energy bins of the He response matrix before mentioned. With the response matrix and the re-binned spectra the counts rate of the Bonner spheres system were calculated and the resulting re-binned neutrons spectra and calculated counts rate were used as the ANN training data set.
Resumo:
A new method to study large scale neural networks is presented in this paper. The basis is the use of Feynman- like diagrams. These diagrams allow the analysis of collective and cooperative phenomena with a similar methodology to the employed in the Many Body Problem. The proposed method is applied to a very simple structure composed by an string of neurons with interaction among them. It is shown that a new behavior appears at the end of the row. This behavior is different to the initial dynamics of a single cell. When a feedback is present, as in the case of the hippocampus, this situation becomes more complex with a whole set of new frequencies, different from the proper frequencies of the individual neurons. Application to an optical neural network is reported.
Resumo:
In this paper we propose a flexible Multi-Agent Architecture together with a methodology for indoor location which allows us to locate any mobile station (MS) such as a Laptop, Smartphone, Tablet or a robotic system in an indoor environment using wireless technology. Our technology is complementary to the GPS location finder as it allows us to locate a mobile system in a specific room on a specific floor using the Wi-Fi networks. The idea is that any MS will have an agent known at a Fuzzy Location Software Agent (FLSA) with a minimum capacity processing at its disposal which collects the power received at different Access Points distributed around the floor and establish its location on a plan of the floor of the building. In order to do so it will have to communicate with the Fuzzy Location Manager Software Agent (FLMSA). The FLMSAs are local agents that form part of the management infrastructure of the Wi-Fi network of the Organization. The FLMSA implements a location estimation methodology divided into three phases (measurement, calibration and estimation) for locating mobile stations (MS). Our solution is a fingerprint-based positioning system that overcomes the problem of the relative effect of doors and walls on signal strength and is independent of the network device manufacturer. In the measurement phase, our system collects received signal strength indicator (RSSI) measurements from multiple access points. In the calibration phase, our system uses these measurements in a normalization process to create a radio map, a database of RSS patterns. Unlike traditional radio map-based methods, our methodology normalizes RSS measurements collected at different locations on a floor. In the third phase, we use Fuzzy Controllers to locate an MS on the plan of the floor of a building. Experimental results demonstrate the accuracy of the proposed method. From these results it is clear that the system is highly likely to be able to locate an MS in a room or adjacent room.
Resumo:
This paper tackles the optimization of applications in multi-provider hybrid cloud scenarios from an economic point of view. In these scenarios the great majority of solutions offer the automatic allocation of resources on different cloud providers based on their current prices. However our approach is intended to introduce a novel solution by making maximum use of divide and rule. This paper describes a methodology to create cost aware cloud applications that can be broken down into the three most important components in cloud infrastructures: computation, network and storage. A real videoconference system has been modified in order to evaluate this idea with both theoretical and empirical experiments. This system has become a widely used tool in several national and European projects for e-learning and collaboration purposes.
Resumo:
Prediction at ungauged sites is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. Regression models relate physiographic and climatic basin characteristics to flood quantiles, which can be estimated from observed data at gauged sites. However, these models assume linear relationships between variables Prediction intervals are estimated by the variance of the residuals in the estimated model. Furthermore, the effect of the uncertainties in the explanatory variables on the dependent variable cannot be assessed. This paper presents a methodology to propagate the uncertainties that arise in the process of predicting flood quantiles at ungauged basins by a regression model. In addition, Bayesian networks were explored as a feasible tool for predicting flood quantiles at ungauged sites. Bayesian networks benefit from taking into account uncertainties thanks to their probabilistic nature. They are able to capture non-linear relationships between variables and they give a probability distribution of discharges as result. The methodology was applied to a case study in the Tagus basin in Spain.
Resumo:
Global demand for mobility is increasing and the environmental impact of transport has become an important issue in transportation network planning and decision-making, as well as in the operational management phase. Suitable methods are required to assess emissions and fuel consumption reduction strategies that seek to improve energy efficiency and furthering decarbonization. This study describes the development and application of an improved modeling framework – the HERA (Highway EneRgy Assessment) methodology – that enables to assess the energy and carbon footprint of different highways and traffic flow scenarios and their comparison. HERA incorporates an average speed consumption model adjusted with a correction factor which takes into account the road gradient. It provides a more comprehensive method for estimating the footprint of particular highway segments under specific traffic conditions. It includes the application of the methodology to the Spanish highway network to validate it. Finally, a case study shows the benefits from using this methodology and how to integrate the objective of carbon footprint reductions into highway design, operation and scenario comparison.
Resumo:
Bayesian network classifiers are widely used in machine learning because they intuitively represent causal relations. Multi-label classification problems require each instance to be assigned a subset of a defined set of h labels. This problem is equivalent to finding a multi-valued decision function that predicts a vector of h binary classes. In this paper we obtain the decision boundaries of two widely used Bayesian network approaches for building multi-label classifiers: Multi-label Bayesian network classifiers built using the binary relevance method and Bayesian network chain classifiers. We extend our previous single-label results to multi-label chain classifiers, and we prove that, as expected, chain classifiers provide a more expressive model than the binary relevance method.