959 resultados para Carbon oxidation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as ≈70‰) shifts in δ13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70‰) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work studies the use of various single-walled carbon nanotube (SWCNT) buckypapers as catalyst supports for methanol electro-oxidation in acid media. Buckypapers were obtained by vacuum filtration from pristine and oxidized SWCNT suspensions in different liquid media. Pt–Ru catalysts supported on the buckypapers were prepared by multiple potentiostatic pulses using a diluted solution of Pt and Ru salts (2 mM H2PtCl6 + 2 mM RuCl3) in acid media. The resulting materials were characterized via SEM, TEM, EDX and ICP-OES analysis. Well dispersed rounded nanoparticles between 2 and 15 nm were successfully electrodeposited on the SWCNT buckypapers. The ruthenium content in the bimetallic deposits was between 32 and 48 at. %, while the specific surface areas of the catalysts were in the range of 72–113 m2 g−1. It was found that the solvent used to prepare the SWCNT buckypaper films has a strong influence on the catalyst dispersion, particle size and metal loading. Cyclic voltammetry and chronoamperometry experiments point out that the most active electrodes for methanol electro-oxidation were prepared with the buckypaper supports that were obtained from SWCNT dispersions in N-methyl-pyrrolidone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several motivations have prompted the scientific community towards the application of hybrid magnetic carbon nanocomposites in catalytic wet peroxide oxidation (CWPO) processes. The most relevant literature on this topic is reviewed, with a special focus on the synergies that can arise from the combination of highly active and magnetically separable iron species with the easily tuned properties of carbon-based materials. These are mainly ascribed to increased adsorptive interactions, to good structural stability and low leaching levels of the metal species, and to increased regeneration and dispersion of the active sites, which are promoted by the presence of the carbon-based materials in the composites. The most significant features of carbon materials that may be further explored in the design of improved hybrid magnetic catalysts are also addressed, taking into consideration the experimental knowledge gathered by the authors in their studies and development of carbon-based catalysts for CWPO. The presence of stable metal impurities, basic active sites and sulphur-containing functionalities, as well as high specific surface area, adequate porous texture, adsorptive interactions and structural defects, are shown to increase the activity of carbon materials when applied in CWPO, while the presence of acidic oxygen-containing functionalities has the opposite effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetic neat and N-doped carbon nanotubes with different properties have been synthesized by chemical vapour deposiüon and tested in the catalytic wet peroxide oxidation of 4-nitrophenol solutions (5 g L') at relatively mild operating conditions (atmospheric pressure, T = 50 °C, pH = 3)~using a catalyst load = 2.5 g L-' and [H202]o = 17.8 g L-1. The results demonstrate that the catalyst hydrophobicity/ hydrophilicity is a detenninant property in the CWPO reaction, since it affects the rate ofH202 decomposition. The controlled formation ofreactive radicais (HO* and HOO*) at hydrophobic surfaces avoids the formation of non-reactive species (02 and H20), increasing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The diffraction pattern of Fe3O4 (not shown) confirmed the presence of only one phase, corresponding to magnetite with a lattice parameter a = 8.357 Å and a crystallite size of 16.6 ± 0.2 nm. The diffraction pattern of MGNC (not shown) confirmed the presence of a graphitic phase, in addition to the metal phase, suggesting that Fe3O4 nanoparticles were successfully encapsulated within a graphitic structure during the synthesis of MGNC. The core-shell structure of MGNC is unequivocally demonstrated in the TEM micrograph shown in Fig. 1b. Characterization of the MGNC textural and surface chemical properties revealed: (i) stability up to 400 oC under oxidizing atmosphere; (ii) 27.3 wt.% of ashes (corresponding to the mass fraction of Fe3O4); (iii) a micro-mesoporous structure with a fairly well developed specific surface area (SBET = 330 m2 g-1); and (iv) neutral character (pHPZC = 7.1). In addition, the magnetic nature of MGNC (Fig. 2) is an additional advantage for possible implementation of in situ magnetic separation systems for catalyst recovery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid magnetic carbon composites have been recently proposed as the next step in the evolution of catalysts for catalytic wet peroxide oxidation (CWPO), with several synergistic effects arising from the combination of the high catalytic activity of metal species with the proven catalytic properties of carbon-based materials in CWPO [1]. Bearing this in mind, this work sought the development of novel magnetic carbon xerogels, composed by interconnected carbon microspheres with iron (Fe) and/or cobalt (Co) microparticles embedded in their structure. As inferred from the extensive characterization performed, materials with distinctive properties were obtained upon inclusion of different metal precursors during the sol-gel polymerization of resorcinol and formaldehyde, followed by thermal annealing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Average total organic carbon concentration in the Norwegian Sea waters varies from 1.93 mg C/liter at depth of 10 m to 1.25 mg C/liter at depth of 2000 m, which is close to average values previously calculated from determinations made by the Marine Hydrophysical Institute at 19 stations in the Atlantic Ocean. The average carbon concentration in waters of the Northeast Atlantic adjacent to the Norwegian Sea is somewhat lower. Particulate carbon concentration, as determined by precipitation with aluminum hydroxide, is measured in tens of µg C/liter, that is few percent of total carbon concentration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Forty-four soils from under native vegetation and a range of management practices following clearing were analysed for ‘labile’ organic carbon (OC) using both the particulate organic carbon (POC) and the 333 mm KmnO4 (MnoxC) methods. Although there was some correlation between the 2 methods, the POC method was more sensitive by about a factor of 2 to rapid loss in OC as a result of management or land-use change. Unlike the POC method, the MnoxC method was insensitive to rapid gains in TOC following establishment of pasture on degraded soil. The MnoxC method was shown to be particularly sensitive to the presence of lignin or lignin-like compounds and therefore is likely to be very sensitive to the nature of the vegetation present at or near the time of sampling and explains the insensitivity of this method to OC gain under pasture. The presence of charcoal is an issue with both techniques, but whereas the charcoal contribution to the POC fraction can be assessed, the MnoxC method cannot distinguish between charcoal and most biomolecules found in soil. Because of these limitations, the MnoxC method should not be applied indiscriminately across different soil types and management practices.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We studied the effects of the composition of impregnating solution and heat treatment conditions on the activity of catalytic systems for the low-temperature oxidation of CO obtained by the impregnation of Busofit carbon-fiber cloth with aqueous solutions of palladium, copper, and iron salts. The formation of an active phase in the synthesized catalysts at different stages of their preparation was examined with the use of differential thermal and thermogravimetric analyses, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and elemental spectral analysis. The catalytic system prepared by the impregnation of electrochemically treated Busofit with the solutions of PdCl, FeCl, CuBr, and Cu(NO ) and activated under optimum conditions ensured 100% CO conversion under a respiratory regime at both low (0.03%) and high (0.5%) carbon monoxide contents of air. It was found that the activation of a catalytic system at elevated temperatures (170-180°C) leads to the conversion of Pd(II) into Pd(I), which was predominantly localized in a near-surface layer. The promoting action of copper nitrate consists in the formation of a crystalline phase of the rhombic atacamite CuCl(OH). The catalyst surface is finally formed under the conditions of a catalytic reaction, when a joint Pd(I)-Cu(I) active site is formed. © 2014 Pleiades Publishing, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catalytic systems containing palladium, copper, and iron compounds on carbon supports-kernel activated carbon and fibrous carbon materials (Karbopon and Busofit)-for the low-temperature oxidation of CO were synthesized. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. The catalytic system based on Karbopon exhibited the highest activity: the conversion of carbon monoxide was 90% at room temperature and a reaction mixture (0.03% CO in air) space velocity of 10 000 h. It was found that the metals occurred in oxidized states in the course of operation: palladium mainly occurred as Pd, whereas copper and iron occurred as Cu and Fe, respectively. © 2008 MAIK Nauka.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New heterogenized catalytic systems for the low-temperature oxidation of CO were synthesized by supporting solutions of Pd, Cu, and Fe salts on carbon fibrous materials (carbopon and busofit). The carbon supports were studied by elemental analysis, SEM, TGA, and TPD. The effects of the nature of the support, the concentration and composition of the active component, and the conditions of preparation on the efficiency of the catalytic system were studied. It was ascertained that attenuation of hydrophilic properties of the support led to the decrease in system activity. The investigation of the catalysts by XPS showed that sample treatment in the reaction medium results in redistribution of the components of the active phase in the near-surface layer of the catalyst. The catalytic system based on carbon fibrous material carbopon prepared by supporting active components (Pd, Cu, and Fe salts) in three stages with intermediate activation in the reaction medium ensures 95% conversion of CO under respiratory conditions, and is promising for the design of the main element of breathing masks on its basis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.