985 resultados para Carbon Isotopes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation that Greenland and Antarctic temperatures have followed a specific 'asymmetrical' pattern on millennial time-scales sets rigid constraints on any viable theory of abrupt climate change. The further observation that the very same asymmetry is also reflected in planktonic and benthic d18O measurements from the Northeast Atlantic has extended this constraint to include a specific response in the ocean. Here we present records of deep-water temperature, d18O and d13C variability from the Northeast Atlantic that help to shed light on the links between overturning circulation perturbations, sea-level variability and inter-hemispheric climate change on millennial time-scales. Results indicate that while deep-water temperatures in the Northeast Atlantic have tracked Greenland climate, the d18O signature of local deepwater (d18Odw) has varied in a manner more reminiscent of Antarctic temperature variability. The previously identified correspondence of Antarctic warm events with benthic d18O minima in the Northeast Atlantic is thus found to apply specifically to d18Odw minima, and to extend beyond Marine Isotope Stage 3 to the entirety of the last 50 ka. It is impossible to reconcile completely the Iberian Margin d18Odw record with existing reconstructions of millennial sea-level variability, leading to the conclusion that a significant portion of the d18Odw record must represent local hydrographic change. This is supported by benthic d13C measurements, which suggest the incursion during Greenland stadials of a colder, low-d18O and low-d13C water-mass, of presumed Antarctic origin. These observations confirm a one-to-one coupling of inter-hemispheric climate events with changes in the Atlantic overturning circulation, but fail to rule in or out a unique mechanism by which they were triggered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature reconstructions indicate that the Pliocene was ~3 °C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 2.8 to 3.3 million years ago from ODP Site 999. Our record is of high enough resolution (~19 Kyrs) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature, which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for epsilon Nd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic delta13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the cleaning of the HPC core surfaces from Hole 480 for photography, the material removed was conserved carefully in approximately 10 cm intervals (by K. Kelts); this material was made available to us in the hope that it would be possible to obtain oxygen isotope stratigraphy for the site. The samples were, of course, somewhat variable in size, but the majority were probably between 5 and 10 cm**3. Had this been a normal marine environment, such sample sizes would have contained abundant planktonic foraminifers together with a small number of benthics. However, this is clearly not the case, for many samples contained no foraminifers, whereas others contained more benthics than planktonics. Among the planktonic foraminifers the commonest species are Globigerina bulloides, Neogloboquadrina dutertrei, and N. pachyderma. A few samples contain a more normal fauna with Globigerinoides spp. and occasional Globorotalia spp. Sample 480-3-3, 20-30 cm contained Globigerina rubescens, isolated specimens of which were noted in a few other samples in Cores 3,4, and 5. This is a particularly solution-sensitive species; in the open Pacific it is only found widely distributed at horizons of exceptionally low carbonate dissolution, such as. the last glacial-to-interglacial transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbon isotopic composition of individual plant leaf waxes (a proxy for C3 vs. C4 vegetation) in a marine sediment core collected from beneath the plume of Sahara-derived dust in northwest Africa reveals three periods during the past 192,000 years when the central Sahara/Sahel contained C3 plants (likely trees), indicating substantially wetter conditions than at present. Our data suggest that variability in the strength of Atlantic meridional overturning circulation (AMOC) is a main control on vegetation distribution in central North Africa, and we note expansions of C3 vegetation during the African Humid Period (early Holocene) and within Marine Isotope Stage (MIS) 3 (approx. 50-45 ka) and MIS 5 (approx. 120-110 ka). The wet periods within MIS 3 and 5 coincide with major human migration events out of sub-Saharan Africa. Our results thus suggest that changes in AMOC influenced North African climate and, at times, contributed to amenable conditions in the central Sahara/Sahel, allowing humans to cross this otherwise inhospitable region.